Int J Performability Eng ›› 2018, Vol. 14 ›› Issue (12): 3151-3158.doi: 10.23940/ijpe.18.12.p24.31513158
Previous Articles Next Articles
Zhenggang Wang, and Guanling Wang()
Revised on
;
Accepted on
Contact:
Wang Guanling
E-mail:23699636@qq.com
Zhenggang Wang, and Guanling Wang. Triplanar Convolutional Neural Network for Automatic Liver and Tumor Image Segmentation [J]. Int J Performability Eng, 2018, 14(12): 3151-3158.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
X. Li, H. Chen, X. Qi, Q. Dou, C. W. Fu, P. A. Heng , “H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes,” IEEE Transactions on Medical Imaging, Vol. 37, No. 12, pp. 2663-2674, 2018
doi: 10.1109/TMI.2018.2845918 pmid: 29994201 |
[2] | K. Simonyan and A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition, ” arXiv Preprint, arXiv: 1409. 1556, 2014 |
[3] | D. Morley , “Visionary Ophthalmics: Confluence of Computer Vision and Deep Learning for Ophthalmology, ” 2018 |
[4] | J. Schreier , “Anatomical Segmentation of CT images for Radiation Therapy planning Using Deep Learning, ” 2018 |
[5] |
A. Sevastopolsky , “Optic Disc and Cup Segmentation Methods for Glaucoma Detection with Modification of U-Net Convolutional Neural Network,” Pattern Recognition and Image Analysis,Vol. 27, No. 3, pp. 618-624, 2017
doi: 10.1134/S1054661817030269 |
[6] | V. Dumoulin and F. Visin , “A Guide to Convolution Arithmetic for Deep Learning, ” arXiv Preprint, arXiv: 1603. 07285, 2016 |
[7] |
F. C. Ghesu, B. Georgescu, S. Grbic, A. Maier, J. Hornegger, D. Comaniciu , “Towards Intelligent Robust Detection of Anatomical Structures in Incomplete Volumetric Data,” Medical Image Analysis, Vol. 48, pp. 203-213, 2018
doi: 10.1016/j.media.2018.06.007 |
[8] |
S. Iqbal, M. U. Ghani, T. Saba, A. Rehman , “Brain Tumor Segmentation in Multi-Spectral MRI Using Convolutional Neural Networks (CNN),” Microscopy Research and Technique,Vol. 81, No. 4, pp. 419-427, 2018
doi: 10.1002/jemt.22994 pmid: 29356229 |
[9] | M. Ghafoorian , “Machine Learning for Quantification of Small Vessel Disease Imaging Biomarkers, ” 2018 |
[10] |
J. Redmon and A. Farhadi,“YOLO9000: better, faster, stronger, ” arXiv Preprint, 2017
doi: 10.1109/CVPR.2017.690 |
[11] | J. W. Johnson, “Adapting Mask-RCNN for Automatic Nucleus Segmentation, ” arXiv Preprint, arXiv: 1805. 00500, 2018 |
[12] | P. Jansson , “Single-Word Speech Recognition with Convolutional Neural Networks on Raw Waveforms, ” 2018 |
[13] | F. Yu and V. Koltun, “Multi-Scale Context aggregation by Dilated Convolutions, ” arXiv Preprint, arXiv: 1511. 07122, 2015 |
[14] | P. L. Combettes and J. C. Pesquet, “Deep Neural Network Structures Solving Variational Inequalities, ” arXivPreprint arXiv: 1808. 07526, 2018 |
[15] | Z. Li and N. Snavely, “Learning Intrinsic Image Decomposition from Watching the World, ” arXiv Preprint, arXiv: 1804. 00582, 2018 |
[16] |
C. Schenck and D. Fox, “Perceiving and Reasoning about Liquids Using Fully Convolutional Networks,” The International Journal of Robotics Research, Vol. 37, No.4-5, pp. 452-471, 2018
doi: 10.1177/0278364917734052 |
[17] | I. Goodfellow , “NIPS 2016 Tutorial: Generative Adversarial Networks,” arXiv Preprint,arXiv:1701. 00160, 2016 |
[18] |
C. Li, X. Wang, W. Liu, L. J. Latecki , “DeepMitosis: Mitosis Detection via Deep Detection, Verification and Segmentation Networks,” Medical image Analysis, Vol. 45, pp. 121-133, 2018
doi: 10.1016/j.media.2017.12.002 pmid: 29455111 |
[19] |
F. Xing and L. Yang ,“RobustNucleus/Cell Detection and Segmentation in Digital Pathology and Microscopy Images: A Comprehensive Review,” IEEE Reviews in Biomedical Engineering,Vol. 9, pp. 234-263, 2016
doi: 10.1109/RBME.2016.2515127 pmid: 26742143 |
[20] | S. Li and G. K. F. Tso. Bottleneck , “Supervised U-Net for Pixel-Wise Liver and Tumor Segmentation, ” arXiv Preprint, arXiv: 1810. 10331, 2018 |
[21] | Y. Wang, Y. Zhou, W. Shen, S. Park, E. K. Fishman, A. L. Yuille, “Abdominal Multi-Organ Segmentation with Organ-Attention Networks And Statistical Fusion, ” arXivPreprint, arXiv: 1804. 08414, 2018 |
[1] | Anshu Devi, Ramesh Kait, and Virender Ranga. A Novel Approach for Secure and Efficient VANET Communication: Integrating Clustering, Curve Fitting, and Fog Computing [J]. Int J Performability Eng, 2024, 20(9): 572-580. |
[2] | Sudeep Varshney, Hoor Fatima, Preeti Dubey, Amit Kumar Upadhyay, and Sarthak Tyagi. Plug and Play Device for In-Depth RAM Data Repository [J]. Int J Performability Eng, 2024, 20(8): 520-528. |
[3] | Priti Kumari, Vandana Dubey, Kavita Patel, Sarika Shrivastava, and Parmeet Kaur. Effective Cache Placement for Content Delivery Networks in Fog Computing [J]. Int J Performability Eng, 2024, 20(1): 10-17. |
[4] | Harsha Gaikwad, Sanil Gandhi, Arvind Kiwelekar, and Manjushree Laddha. Analyzing Brain Signals for Predicting Students’ Understanding of Online Learning: A Machine Learning Approach [J]. Int J Performability Eng, 2023, 19(7): 462-470. |
[5] | Arvind Kumar Mishra, Renuka Nagpal, Kirti Seth, and Rajni Sehgal. Maintainability of Service-Oriented Architecture using Hybrid K-means Clustering Approach [J]. Int J Performability Eng, 2023, 19(1): 33-42. |
[6] | Geetanjali S. Mahamunkar, Arvind W. Kiwelekar, and Laxman D. Netak. Deep Learning Model for Black Spot Classification [J]. Int J Performability Eng, 2022, 18(3): 222-230. |
[7] | Yi-Hao Chiu, Yi-Kuei Lin, and Thi-Phuong Nguyen. Network Reliability of a Stochastic Online-Food Delivery System with Space and Time Constraints [J]. Int J Performability Eng, 2021, 17(5): 433-443. |
[8] | Mengli Ruan. Quality Management of the Food Cold Chain System based on Big Data Analysis [J]. Int J Performability Eng, 2020, 16(5): 757-765. |
[9] | Yongquan Xia, Sihai Qiao, Qianqian Ye. Automatic Liver Segmentation Method based on Deep Learning and Region Growing Algorithm [J]. Int J Performability Eng, 2020, 16(12): 1900-1909. |
[10] | Zhongbo Wang and Zhilin Suo. Data Analysis of Hybrid Principal Component for Rural Land Circulation Management based on Gray Relation Algorithmic Models [J]. Int J Performability Eng, 2019, 15(7): 1976-1987. |
[11] | Wei Huang, Xiao Dong, Wenqian Shang, Weiguo Lin, and Menghan Yan. An Improved Optimal Method for Classification Problem [J]. Int J Performability Eng, 2019, 15(11): 3031-3041. |
|