| RMS | ${{X}_{RMS}}=\sqrt{\frac{\sum\limits_{z=1}^{Z}{{{x}_{z}}^{2}}}{Z}}$ |
| Crest factor | ${{X}_{C}}=\frac{\left| {{x}_{z}} \right|}{{{X}_{RMS}}}$ |
| Kurtosis | ${{X}_{K}}=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{(\frac{{{x}_{z}}-\overline{x}}{{{X}_{SD}}})}^{4}}}$ |
| Waveform | ${{X}_{W}}=\frac{{{X}_{RMS}}}{\frac{1}{Z}\sum\limits_{z=1}^{Z}{\left| {{x}_{z}} \right|}}$ |
| Skewness | ${{X}_{SK}}=\frac{Z\sum\limits_{z=1}^{Z}{{{({{x}_{z}}-\overline{x})}^{3}}}}{(Z-1)(Z-2){{X}_{SD}}^{3}}$ |
| Mean | $\overline{x}=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{x}_{z}}}$ |
| SD | ${{X}_{SD}}=\sqrt{\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{({{x}_{z}}-\overline{x})}^{2}}}}$ |
| MSE | $MSE=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{\varepsilon }_{z}}^{2}},{{\varepsilon }_{z}}=observe{{d}_{z}}-predicte{{d}_{z}}$ |
| Variance | ${{X}_{V}}=\frac{1}{Z}\sum\limits_{z=1}^{Z}{{{({{x}_{z}}-\overline{x})}^{2}}}$ |
| MP | ${{X}_{MP}}=\max ({{x}_{z}})$ |