Username   Password       Forgot your password?  Forgot your username? 

 

Random Dynamic Analysis of Ring Die Pellet Mill

Volume 15, Number 2, February 2019, pp. 362-373
DOI: 10.23940/ijpe.19.02.p2.362373

Risu Na, Jie Liu, and Haitang Cen

Department of Mechanical Engineering, Inner Mongolia University of Technology, Hohhot, 010051, China

(Submitted on October 10, 2018; Revised on November 8, 2018; Accepted on December 20, 2018)

Abstract:

Ring die pellet mills are widely applied in feed and biomass fuel. Particles are formed by rotating ring die, so torsional vibration is essential. Because the material has randomness in the extrusion process, the torsional vibration of ring die pellet mills is random, which affects the life, stability, and reliability. Using Lagrange equations and the lump-mass method, the torsional dynamic model of the ring die pellet mill is established. Based on the stochastic volatility model, the extrusion force is created. The dynamic equation of the ring die pellet mill is solved using the Runge-Kutta integration method, and the results show that the torsional vibration is related to the extrusion force, rotational speed, errors in installation, and fabrication. The torsional vibration and the torque of the ring die have similar changes in trend. The error affects the torsional vibration when it reaches a certain level.

 

References: 15

        1. K. H. Jens, B. H. Ulrik, E. H. Johan, et al., “Optimization of a Multiparameter Model for Biomass Pelletization to Investigate Temperature Dependence and to Facilitate Fast Testing on Pelletization Behaviour,” Energy & Fuels, Vol. 25, No. 8, pp. 3701-3711, 2011
        2. K. H. Jens, B. M. Ulrik, W. Kim, et al., “Experimental Verification of Novel Pellet Model using a Single Pelleter Unit,” Energy & Fuels, Vol. 21, No. 4, pp. 2446-2449, 2007
        3. J. M. Castellano, M. Gómez, M. Fernández, L. S. Esteban, and J. E. Carrasco, “Study on the Effects of Raw Materials Composition and Pelletization Conditions on the Quality and Properties of Pellets Obtained from Different Woody and Non Woody Biomasses,” Fuel, Vol. 139, pp. 629-636, 2015
        4. W. Stelte, J. K. Holm, A. R. Sanadi, S. Barsberg, J. Ahrenfeldt, and U. B. Henriksen, “Fuel Pellets from Biomass: The Importance of the Pelletizing Pressure and Its Dependency on the Processing Conditions,” Fuel, Vol. 90, No. 11, pp. 3285-3290, 2011
        5. K. Wu, Y. Sun, and B. B. Peng, “Modeling and Experiment on Rotary Extrusion Torque in Ring-Die Pelleting Process,” Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), Vol. 29, No. 24, pp. 33-38, 2013
        6. J. F. Shen, K. Wu, and X. A. Cui, “Vibration Analysis and Structural Optimization of a Ring Die Pellet Mill with Rotor Eccentricity,” Journal of Vibration and Shock, Vol. 35, No. 24, pp. 59-65, 2016
        7. F. Correaméndez, A. Carrilloparra, J. G. Rutiagaquiñones, F. Marquez-Montesino, H. Gonzalez-Rodriguez, E. J. Ybarra, et al., “Granulometric Distribution in Timber by-Products for Potential Use in Pellets and Briquettes,” Revista Mexicana De Ciencias Forestales, Vol. 5, No. 53, pp. 53-63, 2014
        8. W. Stelte, J. K. Holm, A. R. Sanadi, S. Barsberg, J. Ahrenfeldt, et al., “A Study of Bonding and Failure Mechanisms in Fuel Pellets from Different Biomass Resources,” Biomass Bioenergy, Vol. 35, pp. 910-918, 2010
        9. W. Stelte, A. R. Sanadi, L. Shang, J. K. Holm, et al., “Recent Developments in Biomass Pelletization-A Review,” Bio-Resources, Vol. 7, pp. 4451-4490, 2012
        10. K. Wu, S. J. Shi, Y. Sun, et al., “Modeling Andanalysis on Extruding Force in Pelleting Process,” Transactions of the Chinese Society of Agricultural Engineering, Vol. 26, No. 12, pp. 142-147, 2010
        11. J. F. Wu, J. L. Huang, and W. G. Zhang, “Simulated Experiment and Model of Pelletizing Density and Extruding Force for Alfalfa Powder,” Transactions of the Chinese Society for Agricultural Machinery, Vol. 38, No. 1, pp. 68-71, 2007
        12. A. M. Yu and Y. Hao, “Free Vibration Analysis of Cylindrical Helical Springs with Noncircular Cross-Sections,” Journal of Sound & Vibration, Vol. 330, No. 11, pp. 2628-2639, 2011
        13. R. J. Elliott, T. K. Siu, and E. S. Fung, “Filtering a Nonlinear Stochastic Volatility Model,” Nonlinear Dynamics, Vol. 67, No. 2, pp. 1295-1313, 2012
        14. J. L. Shi, X. G. Ma, C. L. Xu, and S. J. Zang, “Meshing Stiffness Analysis of Gear using the Ishikawa Method,” Applied Mechanics & Materials, Vol. 401, No. 4, pp. 203-206, 2013
        15. L. Katafygiotis and S. H. Cheung, “Wedge Simulation Method for Calculating the Reliability of Linear Dynamical Systems,” Probabilistic Engineering Mechanics, Vol. 19, pp. 229-238, 2004

         

        Please note : You will need Adobe Acrobat viewer to view the full articles.Get Free Adobe Reader

        1.      K. H. Jens, B. H. Ulrik, E. H. Johan, et al., “Optimization of a Multiparameter Model for Biomass Pelletization to Investigate Temperature Dependence and to Facilitate Fast Testing on Pelletization Behaviour,” Energy & Fuels, Vol. 25, No. 8, pp. 3701-3711, 2011

        2.      K. H. Jens, B. M. Ulrik, W. Kim, et al., “Experimental Verification of Novel Pellet Model using a Single Pelleter Unit,” Energy & Fuels, Vol. 21, No. 4, pp. 2446-2449, 2007

        3.      J. M. Castellano, M. Gómez, M. Fernández, L. S. Esteban, and J. E. Carrasco, “Study on the Effects of Raw Materials Composition and Pelletization Conditions on the Quality and Properties of Pellets Obtained from Different Woody and Non Woody Biomasses,” Fuel, Vol. 139, pp. 629-636, 2015

        4.      W. Stelte, J. K. Holm, A. R. Sanadi, S. Barsberg, J. Ahrenfeldt, and U. B. Henriksen, “Fuel Pellets from Biomass: The Importance of the Pelletizing Pressure and Its Dependency on the Processing Conditions,” Fuel, Vol. 90, No. 11, pp. 3285-3290, 2011

        5.      K. Wu, Y. Sun, and B. B. Peng, “Modeling and Experiment on Rotary Extrusion Torque in Ring-Die Pelleting Process,” Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), Vol. 29, No. 24, pp. 33-38, 2013

        6.      J. F. Shen, K. Wu, and X. A. Cui, “Vibration Analysis and Structural Optimization of a Ring Die Pellet Mill with Rotor Eccentricity,” Journal of Vibration and Shock, Vol. 35, No. 24, pp. 59-65, 2016

        7.      F. Correaméndez, A. Carrilloparra, J. G. Rutiagaquiñones, F. Marquez-Montesino, H. Gonzalez-Rodriguez, E. J. Ybarra, et al., “Granulometric Distribution in Timber by-Products for Potential Use in Pellets and Briquettes,” Revista Mexicana De Ciencias Forestales, Vol. 5, No. 53, pp. 53-63, 2014

        8.      W. Stelte, J. K. Holm, A. R. Sanadi, S. Barsberg, J. Ahrenfeldt, et al., “A Study of Bonding and Failure Mechanisms in Fuel Pellets from Different Biomass Resources,” Biomass Bioenergy, Vol. 35, pp. 910-918, 2010

        9.      W. Stelte, A. R. Sanadi, L. Shang, J. K. Holm, et al., “Recent Developments in Biomass Pelletization-A Review,” Bio-Resources, Vol. 7, pp. 4451-4490, 2012

        10.   K. Wu, S. J. Shi, Y. Sun, et al., “Modeling Andanalysis on Extruding Force in Pelleting Process,” Transactions of the Chinese Society of Agricultural Engineering, Vol. 26, No. 12, pp. 142-147, 2010

        11.   J. F. Wu, J. L. Huang, and W. G. Zhang, “Simulated Experiment and Model of Pelletizing Density and Extruding Force for Alfalfa Powder,” Transactions of the Chinese Society for Agricultural Machinery, Vol. 38, No. 1, pp. 68-71, 2007

        12.   A. M. Yu and Y. Hao, “Free Vibration Analysis of Cylindrical Helical Springs with Noncircular Cross-Sections,” Journal of Sound & Vibration, Vol. 330, No. 11, pp. 2628-2639, 2011

        13.   R. J. Elliott, T. K. Siu, and E. S. Fung, “Filtering a Nonlinear Stochastic Volatility Model,” Nonlinear Dynamics, Vol. 67, No. 2, pp. 1295-1313, 2012

        14.   J. L. Shi, X. G. Ma, C. L. Xu, and S. J. Zang, “Meshing Stiffness Analysis of Gear using the Ishikawa Method,” Applied Mechanics & Materials, Vol. 401, No. 4, pp. 203-206, 2013

        L. Katafygiotis and S. H. Cheung, “Wedge Simulation Method for Calculating the Reliability of Linear Dynamical Systems,” Probabilistic Engineering Mechanics, Vol. 19, pp. 229-238, 2004
         
        This site uses encryption for transmitting your passwords. ratmilwebsolutions.com