Username   Password       Forgot your password?  Forgot your username? 

ISSUES BY YEAR

Volume 15 - 2019

No.1 January 2019
No.1 January 2019
No.2 February 2019
No.2 February 2019
No.3 March 2019
No.3 March 2019

Volume 14 - 2018

No.1 January 2018
No.1 January 2018
No.3 March 2018
No.3 March 2018
No.4 April 2018
No.4 April 2018
No.5 May 2018
No.5 May 2018
No.6 June 2018
No.6 June 2018
No.7 July 2018
No.7 July 2018
No.8 August 2018
No.8 August 2018
No.9 September 2018
No.9 September 2018
No.10 October 2018
No.10 October 2018
No.11 November 2018
No.11 November 2018
No.12 December 2018
No.12 December 2018

Volume 13 - 2017

No.4 July 2017
No.4 July 2017
No.5 September 2017
No.5 September 2017
No.7 November 2017
No.7 November 2017
No.8 December 2017
No.8 December 2017

Volume 12 - 2016

Volume 11 - 2015

Volume 10 - 2014

Volume 9 - 2013

Volume 8 - 2012

Volume 7 - 2011

Volume 6 - 2010

Volume 5 - 2009

Volume 4 - 2008

Volume 3 - 2007

Volume 2 - 2006

Reliability Analysis of Identical Two-Unit Parallel CC Plant System Operative with Full Installed Capacity

Volume 7, Number 2, March 2011 - Paper 7 - pp. 179-187

A. G. MATHEW1, S. M. RIZWAN2, M. C. MAJUMDER3, K. P. RAMACHANDRAN4 and G. TANEJA5

1, 4 Department of Mechanical and Industrial Engineering, Caledonian College of Engineering, Oman
2     Department of Mathematics and Statistics, Caledonian College of Engineering, Oman
3     Department of Mechanical Engineering, National Institute of Technology, Durgapur, India
    Department of Statistics, MD University, Rohtak, India

(Received on September 13, 2009, revised on September 12, 2010)


Abstract:

The paper presents a reliability analysis of an identical two-unit parallel CC plant system. Each unit consists of two identical 150 ton electrically operated overhead travelling (EOT) cranes operative at fully installed capacity. Failure in any crane of a unit brings the unit to a complete halt, and the inspection is carried out to detect the type of failure.  Four years maintenance data from a steel production plant have been used for this purpose. Three major failures were noted in the system, viz., repairable, replaceable, and reconditioning/reinstallation. The real failure situations as depicted in the data have been considered for analysis. Optimized reliability indices of the system effectiveness are estimated numerically by using semi-Markov processes and regenerative point techniques.

 

References: 3

Click here to download the paper.

Please note : You will need Adobe Acrobat viewer to view the full articles.Get Free Adobe Reader

 

CURRENT ISSUE

Prev Next

Cascaded Trust Network-based Block-Incremental Recommendation Strategy

Shujuan Ji, Da Li, Qing Zhang, Chunjin Zhang, and Chunxiao Bao

Read more

Cuckoo-based Malware Dynamic Analysis

Lele Wang, Binqiang Wang, Jiangang Liu, Qiguang Miao, and Jianhui Zhang

Read more

Colorization for Anime Sketches with Cycle-Consistent Adversarial Network

Guanghua Zhang, Mengnan Qu, Yuhao Jin, and Qingpeng Song

Read more

Bayesian Network Model for Learning Arithmetic Concepts

Yali Lv, Tong Jing, Yuhua Qian, Jiye Liang, Jianai Wu, and Junzhong Miao

Read more

Collaboration System Design of the Transportation Platform

Zhongwen Wang, Dong Liang, Ruizhen Duan, and Mingshan Chi

Read more

Specific Emitter Identification based on Power Amplifier

Zhen Zhang, Jie Chang, Mengqiu Chai, and Nan Tang

Read more

NRSSD: Normalizing Received Signal Strength to Address Device Diversity Problem in Fingerprinting Po…

Chunxiu Li, Jianli Zhao, Qiuxia Sun, Xiang Gao, Guoqiang Sun, and Chendi Zhu

Read more

Fast AIS Data Decoding Algorithm for Multi-Core CPU

Xiangkun Zeng, Huaran Yan, Yingjie Xiao and Xiaoming Yang

Read more
This site uses encryption for transmitting your passwords. ratmilwebsolutions.com