Username   Password       Forgot your password?  Forgot your username? 

ISSUES BY YEAR

Volume 15 - 2019

No.1 January 2019
No.1 January 2019
No.2 February 2019
No.2 February 2019
No.3 March 2019
No.3 March 2019
No.4 April 2019
No.4 April 2019
No.5 May 2019
No.5 May 2019
No.6 June 2019
No.6 June 2019
No.7 July 2019
No.7 July 2019

Volume 14 - 2018

No.1 January 2018
No.1 January 2018
No.3 March 2018
No.3 March 2018
No.4 April 2018
No.4 April 2018
No.5 May 2018
No.5 May 2018
No.6 June 2018
No.6 June 2018
No.7 July 2018
No.7 July 2018
No.8 August 2018
No.8 August 2018
No.9 September 2018
No.9 September 2018
No.10 October 2018
No.10 October 2018
No.11 November 2018
No.11 November 2018
No.12 December 2018
No.12 December 2018

Volume 13 - 2017

No.4 July 2017
No.4 July 2017
No.5 September 2017
No.5 September 2017
No.7 November 2017
No.7 November 2017
No.8 December 2017
No.8 December 2017

Volume 12 - 2016

Volume 11 - 2015

Volume 10 - 2014

Volume 9 - 2013

Volume 8 - 2012

Volume 7 - 2011

Volume 6 - 2010

Volume 5 - 2009

Volume 4 - 2008

Volume 3 - 2007

Volume 2 - 2006

Assessment of Airport Air Side Performability from the Perspective of the Consumer

Volume 7, Number 2, March 2011 - Paper 2 - pp. 121-136

SCOTT WIDENER, MURAT ERKOC, and JOSEPH SHARIT

University of Miami, Department of Industrial Engineering,
Coral Gables, FL 33146, United States of America

(Received on March 31, 2010, revised on August 07, 2010)


Abstract:

Traditional approaches to assess the performability of airports ignore the needs of consumers in terms of the ability to move both passengers and cargo in a timely fashion, instead focusing on the airport as an economic entity. These approaches focus on the ability to generate throughput based upon the available assets at the airport. In this paper, we explore the ability to generate timely throughputs of flights based upon both the assets of the airport and the way those assets are used. We employ widely accepted data envelopment analysis (DEA) to measure performability of the 45 largest airports in the United States using data spanning an eight-year period. The result of these models is a new aviation system diagnostic that identifies weaknesses throughout the entire national airspace to highlight specific areas for improvement and investment for reliable timely throughput. To illustrate the methodology, we present two case studies.

 

References: 27

Click here to download the paper.

Please note : You will need Adobe Acrobat viewer to view the full articles.Get Free Adobe Reader

 

CURRENT ISSUE

Prev Next

Degradation Index Extraction and Degradation Trend Prediction for Rolling Bearing

Xin Zhang, Jianmin Zhao, Xianglong Ni, Haiping Li, and Fucheng Sun

Read more

Explore One Factor of Affecting Software Reliability Demonstration Testing Result

Zhenyu Ma, Wei Wu, Wei Zhang, Jianping Wang, and Fusheng Liu

Read more

On-Condition Maintenance Decision on EMU Bogie

Yonghua Li, Hongjie Yu, Yuehua Gao, and Xiaojia Liang

Read more

Lubrication Characteristics Analysis of a Rotor Bearing for Space Application

Shouqing Huang, Shouwen Liu, Xiaokai Huang, and Fangyong Li

Read more

Analog Circuit Fault Prognostic Approach using Optimized RVM

Chaolong Zhang, Yigang He, Shanhe Jiang, Lanfang Zhang, and Xiaolu Wang

Read more

Speech Enhancement Algorithms with Adaptive Methods

Chunli Wang, Peiyi Yang, Quanyu Wang, Lili Niu, and Huaiwei Lu

Read more

Edge Detection Method based on Lifting B-Spline Dyadic Wavelet

Zhibin Hu, Caixia Deng, Yunhong Shao, and Cui Wang

Read more

Word Sense Disambiguation based on Maximum Entropy Classifier

Chunxiang Zhang, Xuesong Zhou, Xueyao Gao, and Bo Yu

Read more
This site uses encryption for transmitting your passwords. ratmilwebsolutions.com