Username   Password       Forgot your password?  Forgot your username? 

ISSUES BY YEAR

Volume 14 - 2018

No.1 January 2018
No.1 January 2018
No.3 March 2018
No.3 March 2018
No.4 April 2018
No.4 April 2018
No.5 May 2018
No.5 May 2018
No.6 June 2018
No.6 June 2018
No.7 July 2018
No.7 July 2018
No.8 August 2018
No.8 August 2018
No.9 September 2018
No.9 September 2018
No.10 October 2018
No.10 October 2018
No.11 November 2018
No.11 November 2018

Volume 13 - 2017

No.4 July 2017
No.4 July 2017
No.5 September 2017
No.5 September 2017
No.7 November 2017
No.7 November 2017
No.8 December 2017
No.8 December 2017

Volume 12 - 2016

Volume 11 - 2015

Volume 10 - 2014

Volume 9 - 2013

Volume 8 - 2012

Volume 7 - 2011

Volume 6 - 2010

Volume 5 - 2009

Volume 4 - 2008

Volume 3 - 2007

Volume 2 - 2006

 

Numerical Analysis of Ventilation for Ship E/R with CFD Method

Volume 14, Number 3, March 2018, pp. 531-546
DOI: 10.23940/ijpe.18.03.p14.531546

Jianping Chena, Jie Xub, Litao Wanga, Xinen Chena, and You Gonga

aSchool of Ship Engineering, Guangzhou Maritime University, Guangzhou, 510725, China
bFaculty of Automation, Guangdong University of Technology, Guangzhou, 510006, China

(Submitted on December 12, 2017; Revised on January 13, 2018; Accepted on February 16, 2018)

Abstract:

The paper presents a CFD numerical simulation method for ship engine room ventilation. First, through the discretization of the fluid governing equations, apply the basic physical model of ship engine room established by GABIT Software to lay out the engine room outlet according to the air supply and then divide the meshes. After the physical model is established, import the FLUENT and then reasonably choose the boundary conditions, solving methods and solving precision. Finally, obtain the optimal scheme by the example of researching the airflow velocity, temperature and humidity distribution under different ventilation schemes, and compare the characteristics of various schemes. The method presented in the paper has a strong significance of theoretical analysis and practical guidance for optimizing the ventilation of the ship engine room.

 

References: 11

  1. N. Chen, D. Zhang, “Calculation of Mechanical Ventilation in Ship Engine Room and Analysis of Airflow”, Ship Science and Technology, vol.31, no.3, pp. 73-76,2009
  2. W. J. Hao, Y. X. Wang, “Numerical Simulation of Temperature Field and Velocity Field in The Engine Room”, Journal of Dalian Maritime University, vol.31, no.1, pp.39-41.68,2005
  3. X. Huang, “Air Conditioner Engineer”, Chinese Machine Press, pp.6-7,2006
  4. F. Jiang, “FLUENTAdvanced Application and Case Analysis”, Beijing: Tsinghua University Press, pp. 7-45, 2008.
  5. F. G. Liu, X. S. Meng, Y. Zhang, “Numerical Simulation of Thermal Environment in Ship Engine Room”, Journal of Dalian Maritime University, vol.37, no.2, pp.136-138,2011
  6. D. H. Qi, “Influence of Indoor Obstruction on Airflow Structure in Embedded Air - Conditioning Room”, Shanghai Jiao Tong University, pp.60-62,2009
  7. H. Sha, “Ventilation of Engine Room, Chinese Version Translated by Lin Ruidong”, Renmin Press, pp.89-124,1956
  8. W. C. Suo, X. C. Wang, “Numerical Simulation of Air Flow Field in Boat Engine Room”, Ship Science and Technology, vol.30, no.1, pp. 149-152,2008
  9. W. Q. Tao, “Numerical Heat Transfer (2nd Edition)”, Xi’an:  Xi'an Jiaotong University Press, pp. 483-487, 2001
  10. Y. Yu,” FLUENT Getting Started with Advanced Tutorials”, Beijing: Beijing Institute of Technology Press, pp. 236-258,2008
  11. S. Zhou, “Numerical Simulation of Thermal Environment of Diesel Engine”, Dalian Maritime University,2010.

 

Please note : You will need Adobe Acrobat viewer to view the full articles.Get Free Adobe Reader

Attachments:
Download this file (IJPE-2018-03-14.pdf)IJPE-2018-03-14.pdf[Numerical Analysis of Ventilation for Ship E/R with CFD Method]1408 Kb
 

CURRENT ISSUE

Prev Next

A Label Propagation Algorithm based on Circular Spread

Yong Wang, Xinzhen Fang, Jiahao Shi, and Jing Yang

Read more

Abnormal Information Identification and Elimination in Cognitive Networks

Ruowu Wu, Xiang Chen, Hui Han, Haojun Zhao, and Yun Lin

Read more

A Framework of Intrusion Detection System based on Bayesian Network in IoT

Qingping Shi, Jian Kang, Rong Wang, Hang Yi, Yun Lin, and Jie Wang

Read more

Marine Three-Shaft Intercooled-Cycle Gas Turbine Engine Transient Thermodynamic Simulation

Jingchao Li, Guoyin Zhang, Yulong Ying,Wanying Shi, and Dongyuan Bi

Read more

An Optimization Method for XML Twig Query

Zhixue He, Huan Wang, and Husheng Liao

Read more

An Indoor Fusion Localization Method using Pedestrian Dead Reckoning

Qian Zhao, Peng Luan, Huiqiang Wang, Hongwu Lv, Guangsheng Feng, and Mao Tang

Read more

Delay Constraint Data Collection Strategy in VANET

Huanhuan Yang, Zongpu Jia, and Guojun Xie

Read more

Parallel Optimization of KNN Query Strategy based on Road Network

Boqi Hu, Hailong Sun, Fangsong Li, Chao Jiang, and Weitao Zou

Read more

An Improved TOA Model based on Error Correction and Self-Genetic Algorithm

Xuyang Wang, Yaxi Wang, Zhongkai Dang, Hongmei Pei, and Long Zhang

Read more

A Bipartite Graph Matching Algorithm in Human-Computer Collaboration

Junfeng Man, Longqian Zhao, Ming Liu, Cheng Peng, and Qianqian Li

Read more

A Distributed Secure Monitoring System based on Blockchain

Guangsong Yang, Xinwen Wu, Yiliang Wu, and Chincheng Chen

Read more

Design of Outcome-based Education Blockchain

Tao Li, Bin Duan, Dayu Liu, and Zhen Fu

Read more

An Automatic Web Data Extraction Approach based on Path Index Trees

Yan Wen, Qingtian Zeng, Hua Duan, Feng Zhang, and Xin Chen

Read more

Deep Web Entity Identification Method with Unique Constraint

Xuefeng Xian, Pengpeng Zhao, Zhaobin Liu, Caidong Gu, and Victor S. Sheng

Read more

A Hierarchical Caching Decision Algorithm for Content-Centric Network

Zengyu Cai, Xuhui Wang, Jianwei Zhang, Wanwei Huang, and Yong Gan

Read more

New Polling Scheme based on Busy/Idle Queues Mechanism

Zhijun Yang, Yangyang Sun, and Jianhou Gan

Read more
This site uses encryption for transmitting your passwords. ratmilwebsolutions.com