
 Available online at www.ijpe-online.com 

 

 

vol. 15, no. 10, October 2019, pp. 2718-2725 

DOI: 10.23940/ijpe.19.10.p18.27182725 

 

 

* Corresponding author. 

E-mail address: zyzhang10@nuaa.edu.cn 

A Context Model for Code and API Recommendation Systems based on 

Programming Onsite Data 

Zhiyi Zhang
a,b,c,*

, Chuanqi Tao
a,b,c

, Wenhua Yang
a,b

, Yuqian Zhou
a,b,d

, and Zhiqiu Huang
a,b

 

aCollage of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics China, Nanjing, 211100, China 
bKey Laboratory of Safety-Critical Software, Ministry of Industry and Information Technology, Nanjing, 211100, China 

cState Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China 
dState Key Laboratory of Cryptology, Beijing, 100878, China 

 

 

Abstract 

Code and application programming interface (API) recommendation systems are important guarantees for efficient and accurate code 

reuse to improve the efficiency of software development. Context data plays a key role in code and API recommendation. A large amount 

of programming onsite data has been generated, but existing code and API recommendation systems rarely consider the context based on 

programming onsite data, which leads to low efficiency and poor accuracy of code and API recommendation. In this paper, we proposed a 

context model for code and API recommendation systems. Our context model is based on programming onsite data collected during 

programming. It includes four aspects: developer, project, time, and environment. Developer data is labeled data abstracted from 

information according to developers' programming habits and abilities, project data is information about the project, time data is 

information about temporal aspects of developers interacting with the project, and environment data is all environment elements used by 

developers during programming. Then, we collected programming onsite data in three ways: explicit collection, implicit collection, and 

reasoning. Lastly, we built the context model using a coarse-grained abstract model for recommendation. Our context model retains the 

key information in the code while eliminating redundant information that may affect the accuracy of the recommend task, and it can 

theoretically improve the efficiency and accuracy of recommendation. 
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1. Introduction 

 

In the field of software engineering, the efficiency of software development is a core concern in both industry and academia. 

Code reuse is an important way to improve the efficiency of software development. Both inexperienced and skilled 

programmers hope to find existing codes that meet their needs, which can help them reduce development time costs. Code 

and application programming interface (API) recommendation systems, which have been used in a wide variety of domains, 

are important guarantees for efficient and accurate code reuse. They can help programmers overcome information overload 

and find relevant codes and APIs to queries proposed by programmers [1]. To improve the accuracy of recommendation 

results, recommendation approaches commonly use context to supplement query conditions of programmers. From an 

operational perspective, context is defined as an aggregate of various categories that describe the setting in which a 

recommender is deployed [2], such as existing codes, current activity, and so on. 

 

In recent years, as the scale and complexity of software systems have increased immensely, a large amount of 

programming onsite data has been generated, and it can be used to improve software productivity and quality. Programming 

onsite data is a collection of data generated from onsite programming during software development, including software 

tasks, testing report data, and source codes. It is of great significance to correctly understand, present, and analyze the 

process of software development, improve software development methods, and liberate us from heavy software 

development work. However, most current recommendation systems rarely consider the context based on programming 
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onsite data, such as developer programming style and programming onsite behavior, which leads to low efficiency and poor 

accuracy. Thus, it is difficult for traditional code and API recommendation approaches to provide effective support for 

software development. 

 

To alleviate this problem, in this paper, we proposed a context model for code and API recommendation systems. Our 

context model is based on programming onsite data collected during programming. It includes four aspects, which are 

developer, project, time, and environment. Then, we mined implicit inter-relationships between contexts and researched 

onsite dynamic correlation and knowledge representation technologies between contexts, such as developers, recommended 

tasks, and historical information. Based on these data, developers could construct a context model for recommendation, 

which could be used to improve the accuracy of code and API recommendation, provide customized recommendation 

services, and enrich semantic information recommendation oriented query conditions. For our context model, we firstly 

determined data categories that should be considered during code and API recommendation. Then, we collected 

programming onsite data in different ways. Lastly, we built the context model for recommendation. Our context model can 

theoretically improve the efficiency and accuracy of recommendations. 

 

Our paper is structured as follows. Section 2 discusses the context data in detail. Section 3 proposes our data collection 

methods. Section 4 shows how the context model is built. Section 5 presents some related works. Finally we conclude in 

Section 6. 

 

2. Context Data 

 

In recommendation systems, a context model is a set of contextual factors that characterize a situation [3]. For code and API 

recommendation, since the set of all programming onsite data is excessively large [4], it is very expensive to collect all these 

data and use them for code and API recommendation. Moreover, some programming onsite data may be difficult to acquire [5], 

and some programming onsite data are not informative for query conditions of developers [6]. 

 

Since recommendation results are used for programming, project information, such as project function and project 

complexity, should be collected. Since different developers have different programming styles and characters, we should 

also collect information about developers. Moreover, software development has the characteristics of cross-time and cross-

regional, so we also collect the programming time and environment information. In summary, we collect four categories of 

programming onsite data, which are developers, project, time, and environment. 

 

2.1. Developer Data 

 

In recommendation systems, the developer plays a very important role. The significant attributes and programming habits of 

developers may greatly influence the selection of recommendation results. For example, there are many ways to read file 

content in Java, such as by byte, character, line, or random reading. One developer may choose to read file content by 

character, but recommendation systems recommend codes of reading file content by line. Although recommended codes 

could also implement the same function, developers may not select these codes because they do not meet their programming 

habits. Another example is that there are many programming languages, and developers may only be familiar with some of 

them. If one developer is familiar with C but unfamiliar with Java, but the recommendation results are Java codes, it is clear 

that this developer will not accept these results. Moreover, in the programming process, developers' experiences also 

influence the selection of recommendation results. An expert may select different recommendation results than a novice would.  

 

Developer data is labeled data abstracted from information according to developers' programming habits and abilities. 

These labeled data can clearly identify the significant attributes of the developers, which makes the recognition, analysis, 

and measurement of developers more effective. As shown in Table 1, our developer data is divided into two categories, the 

developer onsite data and the developer history data. Developer onsite data responds to the developers' behaviors and 

perception of current development projects, including data about developer programming behavior, current integrated 

development environment (IDE) familiarity, and current project familiarity. The developer programming behavior factor is 

what a developer is doing in this project. For example, which codes are written by this developer? In our work, we divide 

the programmers' behaviors into six categories: coding, debugging, using version control, testing performed outside the IDE, 

reviewing code, and others [7]. The current IDE familiarity factor is the level of IDE experience of a developer. There are 

many programming tools, and one developer may be familiar with Eclipse but unfamiliar with NetBeans. According to [8], 

we distinguish the current IDE familiarity factor as experts and novices. We use the average number of different IDE 

commands used by a developer as a threshold. The more different IDE commands he or she uses, the more skilled he or she 

is with this IDE. The current project familiarity factor is the level of a specific project experience of a developer. Similar to 

the current IDE familiarity factor, we also distinguish the current project familiarity factor as experts and novices. If one 
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developer has worked on five or more projects, which are similar to the project he or she is working on now, we consider 

this developer as an expert; otherwise, we consider him or her as a novice. 

 
Table 1. Developer data 

Developer classification Data information 

Onsite data 

Developer programming behavior 

Current IDE familiarity 

Current project familiarity 

History data 

Developer experience 

Developer programming habit 

Programming social network 

Developer IDE experience 

 

History data could provide information about developers' programming habits and experience. It includes data about 

developer experience, developer programming habits, developer social networks, and developer IDE experience. The 

developer experience factor describes the level of overall software development experience of the developer. We adopt the 

evaluation method from [9]. If a developer has five or more years of professional programming experience, we classify him 

or her as an expert, while between two and five years is competent, and less than two years is novice. The developer 

programming habit factor reflects the developer's behavioral tendencies when programming. For example, some developers 

may like to use "goto" statements while others do not. The developer social network factor focuses on the concern network 

and the cooperation network. The concern network refers to the social network formed by the relationship between 

developers in the open source community. The relationship in the network reflects the degree of concern of one developer to 

another developer. The cooperation network refers to the social connections between developers generated in the process of 

the project. The analysis of social relations can reflect the recognition degree of a developer and the participation degree of 

the developer in the development process, thus reflecting the programming ability of the developer. The developer IDE 

experience is similar to the current IDE familiarity. It can reflect the developer proficiency in various IDEs. 

 

2.2. Project Data 

 

Project data is information about the project, such as the function, construction, and artifacts. It is the most diverse in data 

collection. As shown in Table 2, it also contains onsite data and history data. 

 
Table 2. Project data  

Onsite project classification Data classification Data information 

Onsite data 

Current status of 

the project 

Current using command 

Current running module 

Call type by developer 

Relevant labels and windows 

Variable description 

Method description 

Method call 

Project structure 

Task information 

Task type 

Query of keywords and codes 

Task characteristics 

Programming error recommendation 

Other information Context priority 

History data Project information 

Project description 

Item category 

Project model 

Code dependencies 

Project complexity 

Item length 

Solved code defects 

History recommendation information 

 

Onsite data includes the current status of the project, task information, and other information. The current status of the 

project is the collection of current state information for the entire software project, from which we could obtain explicit or 

implicit associations between the context. It includes eight factors, which include the current using command and current 

running module. These factors have long been recognized as relevant context in software engineering [10-11]. Task 

information is the collection of programmers' codes or API query tasks, including task type, query of keywords and codes, 

task characteristics, and programming error recommendation. Through these data, we could find code and API 

recommendation tasks that the programmer may need and then recommend codes and APIs by combing developer data. 
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Moreover, in the programming onsite context, we propose the concept of context priority information. In general, we 

consider that the more contextual data there is, the more accurate the recommended codes and APIs are, but the longer time 

the recommendation takes. Due to the real-time requirements of onsite programming, developers may artificially choose 

some contextual data. In order to improve the recommendation efficiency and meet the query of the developer, the 

developer may select some context data with higher priority and remove the low priority context data that has less influence 

on the recommendation results. 

 

In addition, although code and API recommendation is used for onsite programming, in order to mine the hidden 

conditions of recommendation task and improve the accuracy of recommendation, we still need to collect some 

programming history data. We collect the project description, item category, project model, code dependencies, project 

complexity, item length, solved code defects, and history recommendation information in our context model. When 

considering these data, the recommended accuracy may be further improved. For example, during onsite programming, if a 

developer has searched for code recommendations in a previous historical version and conducted a similar code and API 

search in the current project version, codes and APIs that are similar to the previous results could be recommended based on 

historical recommendations. Since these codes and APIs have been accepted by the developer in a previous search, they also 

have high probability to be accepted in this query. 

 

2.3. Time and Environment Data 

 

Time data is the information about temporal aspects of developers interacting with the project. Three factors, time 

information, project version number, and last modified time of the project, are collected as the Time context data in Table 3. 

From these data, we can find when the project is being performed or modified, which could improve the efficiency and 

accuracy of recommendations. For example, since modifications at different times have different bugginess, codes and APIs 

committed between 7 AM and noon could be recommended because they are less buggy [12].  

 
Table 3. Time and environment data  

Programming data classification Data information 

Programming time 

Time information (year, month and day) 

Project version number 

Last modified time of the project 

Programming environment 

Programming location 

Project platform IDE 

Interface elements used by developers 

Interface elements that developers care about 

 

As shown in Table 3, environment data is all environment elements used by developers during programming. The 

programming location represents the location where developers are programming. The project platform IDE shows the IDE 

tool that developers are using. Interface elements used by developers and interface elements that developers care about 

reflect which elements a developer may interact with. These data can provide additional related information for 

recommendation. For example, when programming in Eclipse, the project explorer user interface displays the hierarchical 

structure of the project, from which we could capture the information about the project structure. 

 

3. Data Collection 

 

We used three methods, explicit collection, implicit collection, and reasoning, to collect data in our context. For the onsite 

data and some historical data of developers, such as the developers' project experience and IDE experience, we collect these 

data explicitly. Developers submit basic personal information and participation information in the software development. 

For example, we could use the questionnaire to query developer data. For developers' programming habits and programming 

social networks, we use implicit collection methods to collect these data. We determine the developer's programming style 

by analyzing his or her previous code documentation and bug reports. Meanwhile, we crawl the developer's recorded data in 

the programming forum through the crawler and use social relationship analysis techniques to reason the developer's 

programming social network. 

 

In the collection of project onsite information, some data information, such as current running modules and current 

using commands, are captured implicitly by methods including screen monitoring and mouse operation monitoring. For 

project structure and call method information, we analyze the project requirements, design documents, and code structure to 

infer relationships between parameters and methods. At the same time, we obtain the task data according to the developer's 

input, and the task data contains passive recommendation tasks with query inputs and active recommendation tasks without 

query inputs. Then, we extract the key features of the query inputs through text-based processing and analysis. Moreover, if 
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the project has historical data, we obtain this information by explicitly collecting the documentation of the software, 

including development documents, log reports, and so on. 

 

For the programming time, we obtain these data through explicit ways of communicating with developers or document 

queries. For the programming environment, we collect relevant information through implicit methods such as screen 

monitoring and mouse operation monitoring. 

 

Moreover, we build an acquisition server to collect all kinds of collected data. When the network is abnormal or 

congested, the redundant data to be collected will be saved to the card terminal and become historical data. Since some data 

may miss during the collecting, we used the K-nearest neighbor filling algorithm to fill these missing data, which could 

solve the random missing problem in incomplete data. There are two steps in our methods. In first step, we will cluster 

initial data, and then use K-nearest neighbor filling algorithm to fill the incomplete data and form a complete data set. In the 

last step, when we obtain new data, we cluster all data and update the clustering results, then based on the basis of the new 

clustering results, the K-nearest neighbor filling algorithm is applied to fill the missing values. According to the continuous 

alternate clustering and filling work, we make full use of complete data and incomplete data information, to get all of 

context data used for code&API recommendation. 

 

4. Model Building 

 

Context data can be captured from many sources, such as codes and developers. For different kinds of contexts, different 

context models need to be defined for representation and abstraction, and different technologies can be used in this process 

for different contexts. For example, when building a code model, developers could refer to the syntax tree analysis 

technique in program analysis. Since codes have good logical structures, they could be modeled using a model similar to the 

abstract syntax tree, but the abstraction granularity is too fine, which makes the matching too cumbersome when 

recommending similar codes. In order to avoid this problem, we use a coarse-grained abstract model when building the code 

model, which retains the key information in the code while eliminating redundant information that may affect the accuracy of 

the recommend task. For each code, the coarse-grained abstract model could extract the statement declaration, class creation, 

function call, conditional statement declaration, and other information in the source code. We will do a static analysis of the 

source code based on these key information. During the static analysis, we can complete source code data flow analysis, 

variable dependency analysis, code slicing analysis, and so on. In our method, the function in the source code is taken as a unit 

when doing code slicing analysis, and we could obtain code slicing information of different variables. Each slice information 

contains usage pattern information of a specific variable or a group of variables, which is the basis for the recommend. 

 

For code slice information, we use code abstract to represent them. In the abstract representation, in order to a uniform 

code abstract representation, concrete variable names are removed from the code, all statement variables are abstracted with 

class names, and classes of code are further abstracted according to code inheritance and interface relationship. In order to 

complete the pattern extraction of code, we need to quantify the code on the basis of code abstraction. Based on the result of 

code abstraction, we assign different number values to each class name and conditional statement, to represent data 

discretely. After the discrete numerical representation of the statement is completed, each slice statement can be converted 

into a vector, and each dimension of the vector represents the number value of a function call, class creation and conditional 

statement. In the vector representation of slice statements, the vector is used for pattern mining, so the order between 

different dimensions of each vector has a certain significance, which represents the order of invocation of different statements. 

 

When building a developer programming style model, different developers have different development habits and 

knowledge backgrounds during software development, and we can capture these data through feature extraction and 

learning techniques. For example, a developer's habits could be learned from his or her participation projects and codes 

written by him or her in the open source community, then these data could be used to provide customized code and API 

recommendation. When building relationships between entities such as code and files, we could use program analysis and 

relational extraction techniques. The calling relationship between codes and the association between files are also important 

context in the onsite programming, and we could capture these data through relationship analysis and extraction techniques 

and then abstract and express them for recommendation. 

 

Specifically speaking, developer data information can be presented in a variety of ways, such as plain text labels or 

specific numerical values. In our method, we plan to use a hybrid representation method, a combination of semantic text 

features and quantitative numerical features, to present developer data information. For example, when representing a 

developer's familiarity with the project, we scan specify this feature as < commit, 100> for the developer. The "commit" 

represents the number of codes submitted by the developer, while "100" is used to identify a total of 100 code submissions 

by the developer. By using this combination of text and numerical, we can visually and quantitatively express the 



 A Context Model for Code and API Recommendation Systems based on Programming Onsite Data                                            2723 

 

characteristic of a developer that familiarity with the project. 

 

In previous work, developer data can be organized by flattening or structured method. Our method plans to adopt a 

structured multi-level organizational form, that is, we set multidimensional attributes at the first level, and each dimension 

includes more finer-grained information. For example, we can specify the dimensions of "development activity" and 

"community activity" in the first level. Furthermore, "development activity" can include data information such as "number 

of commits submitted", "number of lines of code submitted", and so on. And "community activity" can also include data 

information such as "number of requests submitted", "number of comments published", and so on. This structured multi-tier 

organization is convenient for building the model of the developer's data in multi-dimension and different granularity. 

 

Raw context data could be transformed into a concrete model representation using the above techniques. Based on these 

programming onsite behavior data and developer information data, by mining implicit context information and researching 

the association and knowledge representation technology between onsite context elements such as developers, 

recommendation tasks, and historical information, we can construct a context model for code and API recommendation. 

This model could be utilized to improve the recommendation accuracy of codes and APIs, provide customized 

recommendations, and enrich the semantic information for the recommended query condition. 

 

5. Related Works 

 

Although research on code and API recommendation mainly focuses on recommendation methods, there are still some 

works on context models that are used for code and API recommendation. Holmes et al. described an approach for locating 

relevant codes in an example repository [13]. This approach takes structure as context data and is based on heuristically 

matching the structure of the code under development to the example code. To increase the possibility that 

recommendations will be accepted, Fogarty et al. used task engagement as an indicator of human interruptibility [14]. They 

observed how developers interact with the IDE when programming and discovered that if the developers performed certain 

editing work, they were less interruptible. Kersten et al. presented a new task context model that could reduce information 

overload [15]. This model focuses on the developers' work by filtering and ranking the information presented by the 

development environment, and it was created by monitoring the developers' activity and extracting the structural 

relationships of program artifacts. DebugAdvisor allowed programmers to search codes using a fat query [16]. This query is 

a context of a bug and includes all the information a programmer has about the bug, such as natural language text, debugger 

output, and so on. 

 

Moreover, Sumner et al. proposed a technique that could encode the current calling context at any point during 

execution and leverage the stack depth to remove unnecessary encoding [17]. It encodes an acyclic call path into a number 

and divides a recursive path into subsequences to encode them independently. Murphy-Hill et al. found that while 

recommendation is feasible to automatically recommend commands to developers based on their usage history, using 

patterns of past discovery is a useful way during code and API recommendation [8]. Danylenko et al. proposed a 

recommender system that could suggest the best-fit component variants for certain actual contexts [18]. These contexts were 

used by a composition technique to improve application runtime performance. Janjic et al. adapted the ranking of 

recommendation results by considering additional metrics, such as lines of code and cyclomatic complexity [19].  

 

Zolaktaf proposed a novel algorithm called CoDis that could be deployed in a user developer community to recommend 

commands [20]. CoDis generates personalized recommendations for a developer by analyzing his or her command usage 

history, command discovery and co-occurrence within the entire community, and the elapsed time between the developer's 

last activity and the time of recommendation. Gasparic et al. statistically evaluated the correlations between IDE command 

usage and different situations and discovered that the contextual factors included in the model statistically correlated with 

the usage of IDE commands [3]. Moreover, they took into account the contexts in which a developer worked, and different 

commands were usually executed. They presented a novel IDE command recommendation algorithm to provide relevant 

recommendations [21]. Chattopadhyay et al. observed that a programming context crosscut activities and artifacts [22].   

 

Heinemann et al. used the code edited within an IDE as development context during recommendation [23]. Wu et al. 

divided the context into five groups, which were query, statement, method body, class body and project artifact, and used 

them for code recommendation in Android development [24-25]. Nguyen et al. found fine-grained code changes by 

statistical learning and then determined the likelihood of a developer inserting an API method call on the recommendation 

point [26]. McBurney et al. summarized the context surrounding of a method, rather than details of the internals of the 

method, during code recommendation. They compared their generated summaries to summaries written manually by experts 

and a state-of-the-art automatic summarization tool. The experiment results showed that their approach did not reach the 

quality of human-written summaries, but it improved the state-of-the-art summarization tool [27]. Ponzanelli et al. presented 
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a holistic recommender system called Libra to help analyze developers' semantic relationships by constructing a holistic 

meta-information model of developers [28]. Bing Developer Assistant (BDA) could automatically detect the APIs under 

editing in the current programming context via the IntelliSense features of IDEs, and it could recommend sample codes 

mined from public software repositories and web pages [29]. 

 

Recently, most of the existing context models used for code and API recommendation only focus on the context from 

code, and they rarely consider the context from developers, time, and the environment. In our model, we divided the context 

into four aspects. For each aspect, we collected the context in three ways. Moreover, we built our model using a coarse-

grained abstract model. All of these can help developers improve the efficiency and accuracy of recommendation. 

 

6. Conclusions 

 

In this paper, we proposed a context model for code and API recommendation systems. Our context model is based on 

programming onsite data collected during programming. It includes four aspects: developer, project, time, and environment. 

Developer data is labeled data abstracted from information according developers' programming habits and abilities, project 

data is information about the project, time data is information about temporal aspects of developers interacting with the 

project, and environment data is all environment elements used by developers during programming. Then, we collected 

programming onsite data in three ways, which were explicit collection, implicit collection, and reasoning. We explicitly 

collected some data, such as onsite data and historical data of developers. Some data project onsite information were 

captured implicitly. The relationship between some data was obtained by reasoning. Lastly, we built the context model 

using a coarse-grained abstract model for recommendation. Our context model retains the key information in the code while 

eliminating redundant information that may affect the accuracy of the recommend task, and it can theoretically improve the 

efficiency and accuracy of recommendation. 
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