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Abstract 

Both the model of minimal failure-causing schema (MFS) and the model of probabilistic failure-causing schema (PFS) were proposed to 

describe characteristics of failure test cases in input-domain testing. To improve the efficiency of software debugging, input variables that 

are related to failure-causing schemas should be closer to the real fault-relevant input variables. In order to examine which model (MFS or 

PFS) can help software engineers localize fault-relevant input variables more preciously, we conduct an experiment on general-form 

Boolean specifications extracted from the well-known TCAS system. For each mutant of a general-form Boolean expression, the set of 

input variables localized by the MFSs, the set of input variables localized by the PFSs, and the set of actual input variables involved in the 

fault are compared. Experimental results suggest that the MFS model usually has an advantage in terms of recall, while the PFS model 

usually has an advantage in terms of precision. Overall, the latter has a slight advantage in terms of f-measure.  
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1. Introduction 
 

Input-domain testing techniques (sometimes referred to as black-box testing) focus on generating or selecting test cases 

from input domains of programs under testing, without considering codes or inner structures of programs [1]. Once failure 

test cases are reported during the running of test cases, software engineers need to fix the bug. Fault localization techniques 

can help localize the fault to improve the efficiency of debugging [2]. Differing from the code-level fault localization 

techniques that indicate which code structure may be faulty, input-level fault localization techniques aim to identify the 

characteristics of failure test cases. Both the model of minimal failure-causing schema (MFS) [3] and the model of 

probabilistic failure-causing schema (PFS) [4] were proposed to describe such characteristics of failure test cases.  

 

In a failure-causing schema, partial input variables have fixed input values while other variables do not. Test cases that 

contain a failure-causing schema must be failure test cases (in the MFS model) or have higher probabilities to be failure test 
cases (in the PFS model). Failure-causing schemas obtained by input-level fault localization algorithms classify the input 

variables into two types: failure-causing schemas-related ones and others. To improve the efficiency of debugging, input 

variables that are related to failure-causing schemas should be closer to the real fault-relevant input variables. However, the 

effectiveness of MFS or PFS has not been studied in-depth yet. Therefore, it is doubtful whether the MFS model and the 

PFS model can describe characteristics of failure test cases preciously.  

 

In order to examine which model can help localize fault-relevant input variables more preciously, we conduct an 

experiment on general-form Boolean specifications extracted from a well-known TCAS system in this paper. In such an 

experiment, for each mutant of a general-form Boolean expression, the set of input variables related to the MFSs, the set of 

input variables related to the PFSs, and the set of actual input variables involved in the fault are compared. Experimental 



2710 Ziyuan Wang, Xueyao Li, Yang Li, and Yuqing Dai 

results suggest that the MFS model usually has advantages in terms of recall, while the PFS model usually has advantages 

in terms of precision. Overall, regarding f-measure, the PFS model has advantages over the MFS model in most cases.  
 

The rest of this paper is organized as follows: preliminaries are introduced in Section 2. Experimental designs are 

described in Section 3. Experimental results are illustrated in Section 4. Threats to validity are analyzed in Section 5. Finally, 

conclusions and future works are given in Section 6.  

 

2. Preliminaries 

 

2.1. Boolean-Specification Testing 

 

A Boolean expression is a string that consists of some Boolean input variables, logic operators '' (AND), '' (OR), '' 
(NOT), and the brackets '(' and ')'. A general-form Boolean expression means that the Boolean expression is neither a 

conjunction normal form nor a disjunction normal form. The goal of Boolean-specification testing is to detect faults in 

Boolean expressions, which are usually extracted from predicate statements of programs.  
 

There are usually ten types of faults that should be considered in the field of Boolean-specification testing [5]:  

 

 ASF: an associative shift fault is caused by omission of a pair of brackets.  

 CCF: a clause conjunction fault is caused by replacing an occurrence of an input variable c by (cc'), where c' could 

be any possible input variable or its negation.  

 CDF: a clause disjunction fault is caused by replacing an occurrence of an input variable c by (cc'), where c' could 

be any possible input variable or its negation.  

 ENF: an expression negation fault is caused by replacing a sub-expression by its negation.  

 LNF: a literal negation fault is caused by replacing an occurrence of an input variable by its negation. It may 

sometimes be called a variable negation fault.  

 LRF: a literal reference fault is caused by replacing an occurrence of an input variable by another variable or its 

negation. It may sometimes be called a variable reference fault.  

 MLF: a missing literal fault is caused by omitting an occurrence of an input variable. It may sometimes be called a 

missing variable fault.  

 ORF: an operator reference fault is caused by replacing an occurrence of a logic connective  (or ) by  (or ).  

 SA0: a stuck-at-0 fault is caused by replacing an occurrence of an input variable by the logic constant FALSE (0).  

 SA1: a stuck-at-1 fault is caused by replacing an occurrence of an input variable by the logic constant TRUE (1).  

 

2.2. Minimal Failure-Causing Schema 

 

The model of minimal failure-causing schema was proposed by Nie et. al. [3]. Consider a program under test with n input 

variables F = {f1, f2,  , fn}, in which each input variable fi has a set of input values Vi = {1, 2,  , ai} for i = 1, 2,  , n 

respectively. The input domain of such a program is D = V1×V2× ×Vn.  

 

Definition 1 (Test case). A test case for such a program is an n-tuple (v1V1, V2V2,  , vnVn).  
 

Definition 2 (Schema). A k-value schema s is an n-tuple s = (-,  , -, vi, 1, -,  , -, vi, 2, -,  , -, vi, k, -,  , -) where 1  k  

n and vi, 1Vi, 1, vi, 2Vi, 2,  , vi, kVi, k. There are k variables whose values have been fixed, as well as n-k variables whose 
values have not been fixed and are denoted as "-".  

 

Definition 3 (Child schema and parent schema). Given a k1-value schema s1 = (v1, v2,  , vn) and a k2-value schema s2 = 

(v'1, v'2,  , v'n), if k1  k2 and (vi = -)(vi = v'i) is always true for i = 1, 2,  , n, then s1 is a child schema of s2 and s2 is a 

parent schema of s1. Such a relationship can be denoted as s1s2.  
 

Definition 4 (Failure-causing schema). A k-value schema s is a failure-causing schema if, for any possible test cases 

tD = V1×V2× ×Vn, st  (t is a failure test case).  
 

Definition 5 (Minimal failure-causing schema). A failure-causing schema s is a minimal failure-causing schema if, for 

any s's, s's  (s' is not a failure-causing schema).  
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For example, consider a Boolean expression a(bc)de and its clause disjunction faulty version 

a(bc)d(de). There is a total of 25 = 32 test cases in the input domain, where only five are failure test cases (see 
Table 1). By extracting child schemas from all five failure test cases and filtering them by other 27 passed test cases, 11 

failure-causing schemas are obtained (see Table 2).  

 
Table 1. All failure test cases for the faulty version a(bc)d(de) 

 a b c d e 

test1 False False False True False 

test2 False False True True False 

test3 False True False True False 

test4 False True True True False 

test5 True True True True False 

 
Table 2. All failure-causing schemas for the faulty version a(bc)d(de) 

 a b c d e 

schema1 False False False True False 

schema2 False False True True False 

schema3 False True False True False 

schema4 False True True True False 

schema5 True True True True False 

schema6 - True True True False 

schema7 False - False True False 

schema8 False - True True False 

schema9 False False - True False 

schema10 False True - True False 

schema11 False - - True False 

 

There are two minimal failure-causing schemas: (-, True, True, True, False) and (False, -, -, True, False). 

This suggests that all five Boolean input variables a, b, c, d, and e are involved in such a fault.  

 

2.3. Probabilistic Failure-Causing Schema 

 

The model of probabilistic failure-causing schema was proposed by Wang et. al. [4]. This model focuses on schemas that 

are likely to cause failures and calculates their probabilities of causing failures as well as their probabilities of appearing 
in testing.  

 

Definition 6 (Failure-causing probability). A schema s is a probabilistic failure-causing schema with a failure-causing 

probability pfail if the ratio of the number of failure test cases that contain s to the number of test cases that contain s is pfail.  

 

Definition 7 (Coverage probability). A schema s is a probabilistic failure-causing schema with a coverage probability 

pcov if the ratio of the number of test cases that contain s to the number of all possible test cases in the input domain is pcov.  

 

A probabilistic failure-causing schema with a failure-causing probability pfail means that, for an arbitrary test case tD 
that contains such a schema, the probability of the event that t is a failure test case is pfail. The coverage probability pcov 

means that, for an arbitrary test case tD, the probability of the event that t contains such a schema is pcov. For the faulty 

Boolean expression a(bc)d(de) whose original version is a(bc)de, partial probabilistic failure-causing 
schemas as well as their failure-causing probabilities and coverage probabilities are shown in Table 3.  

 

In the original version of the model of probabilistic failure-causing schema, the schemas with the greatest metric score, 

defined as pfail × pcov, should be selected [4]. Three schemas (-, -, -, True, False), (-, -, -, True, -), and (-, -, -, -, 

False) are the results, which suggests that only two Boolean input variables d and e are involved in the fault.  

 

3. Experimental Setup 

 

This section describes the experiment to compare the model of minimal failure-causing schema and the model of 

probabilistic failure-causing schema on Boolean specifications.  

 

 
Table 3. Partial probabilistic failure-causing schemas for the faulty version a(bc)d(de) 
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3.1. Research Questions 

 

Both the model of minimal failure-causing schema (MFS) and the model of probabilistic failure-causing schema (PFS) aim 

to describe the characteristics of failure test cases preciously. Based on these models, input-domain fault localization 

methods output minimal or probabilistic failure-causing schemas and classify all the input variables into two classes: 

failure-causing schemas-related input variables and others. Input variables related to the failure-causing schemas should be 

closer to the real fault-relevant input variables.  
 

To measure how effectively the MFS model or PFS model localize fault-relevant input variables, we compare the set of 

input variables related to the MFSs (VarSetmfs-related) or the set of input variables related to the PFSs (VarSetpfs-related) to the set 

of actual input variables that are involved in the fault (VarSetrelevant). We use the metrics recall, precision, and f-measure in 

our experiment. Consequently, the following research questions should be answered:  

 

Research Question 1 (Recall): Which model can classify input variables with a higher recall?  

 

Research Question 2 (Precision): Which model can classify input variables with a higher precision?  

 

Research Question 3 (F-measure): Which model can classify input variables with a higher f-measure?  
 

The metrics recall, precision, and f-measure are defined using the notations in the field of classification. In such a 

classification task, the set of input variables related to the MFSs or PFSs is denoted as VarSetfs-related. True positive (TP) 

means the input variables related to MFSs or PFSs are truly fault-relevant, false negative (FN) means the input variables not 

related to MFSs or PFSs are fault-relevant, and false positive (FP) means the input variables related to MFSs or PFSs are 

not fault-relevant [6].  
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 (3) 

 

It is evident that higher recall, precision, and f-measure values indicate greater effectiveness of the MFS model or the 

PFS model, as well as a more precious description of characteristics of failure test cases.  

 

3.2. Experimental Subject 

 

In the field of Boolean-specification testing, 20 general-form Boolean expressions named TCAS1 - TCAS20, which were 

extracted from a TCAS system [7], have been widely used as benchmarks [8]. They have often been used in the experiments 

of input-domain testing as well [9-10]. For these 20 general-form Boolean expressions, we use ten mutation operators to 

create 24,521 mutants, of which 19,131 mutants are non-equivalent ones. There is only one fault in each mutant.  

 

The set of actual input variables involved in a fault can be described as follows:  
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 Fault-relevant input variables for ASF: all the variables between the missed pair of brackets.  

 Fault-relevant input variables for CCF: all the variables in the inserted clause conjunction.  

 Fault-relevant input variables for CDF: all the variables in the inserted clause disjunction.  

 Fault-relevant input variables for ENF: all the variables in the negated sub-expression.  

 Fault-relevant input variables for LNF: the variable that can be replaced by its negation.  

 Fault-relevant input variables for LRF: the variable that can be replaced and its substitute.  

 Fault-relevant input variables for MLF: the missed variable.  

 Fault-relevant input variables for ORF: the variables that can be connected by the replaced logic operator.  

 Fault-relevant input variables for SA0: the variable that can be replaced by the logic constant FALSE (0).  

 Fault-relevant input variables for SA1: the variable that can be replaced by the logic constant TRUE (1).  
 

3.3. Experimental Process 
 

There is a total of three steps in the experiment:  
 

(1) For each fault, find all the actual input variables involved in such a fault according to the rules given in the previous 

sub-section to form the set of real fault-relevant input variables VarSetrelevant.  
 

(2) For each fault, find all the minimal failure-causing schemas to form the set of input variables related to all the 

MFSs VarSetmfs-related, and calculate the recall, precision, and f-measure scores of VarSetmfs-related and VarSetrelevant. Here, 

the failure-causing schemas are obtained according to the process described in reference [11] and using the tool 

described in reference [12].  
 

(3) For each fault, find all the probabilistic failure-causing schemas with the greatest score pfail×pcov to form the set of 

input variables related to the greatest-score PFSs VarSetpfs-related, and calculate the recall, precision, and f-measure scores of 

VarSetmfs-related and VarSetrelevant. The approach is similar to that utilized in the second step.  
 

4. Experimental Results 
 

This section illustrates the results of comparing the MFS model and the PFS model in terms of recall, precision, and f-

measure. Findings and remarks are discussed based on these results.  
 

4.1. Results for RQ1 
 

Figures 1 and 2 compare the recall score of the set of input variables related to the MFSs and the recall score of the set 

of input variables related to the greatest-score PFSs for each fault. There are 20 groups of box graphs in Figure 1, where 

each group stands for the mutants obtained from one of the 20 original Boolean expressions. In each group of box graphs, 

the left box graph illustrates the recall scores for the PFS model, while the right box graph illustrates the recall scores for 

the MFS model.  
 

Similarly, there are ten groups of box graphs in Figure 2, where each group stands for the mutants obtained by 

performing one of ten mutation operators. Recall scores are compared in each group.  
 

4.2. Results for RQ2 
 

Figures 3 and 4 compare the precision score of the set of input variables related to the MFSs and the precision score of 

the set of input variables related to the greatest-score PFSs for each fault. There are 20 groups of box graphs in Figure 3, 

where each group stands for the mutants obtained from one of the 20 original Boolean expressions. In each group of box 
graphs, the left one illustrates the precision scores for the PFS model, while the right one illustrates the precision scores 

for the MFS model.  
 

Similarly, there are ten groups of box graphs in Figure 4, where each group stands for the mutants obtained by 

performing one of ten mutation operators. Precision scores are compared in each group.  
 

4.3. Results for RQ3 
 

Figures 5 and 6 compare the f-measure score of the set of input variables related to the MFSs and the f-measure score of the 

set of input variables related to the greatest-score PFSs for each fault. There are 20 groups of box graphs in Figure 5, where 
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each group stands for the mutants obtained from one of the 20 original Boolean expressions. In each group of box graphs, 

the left one illustrates the f-measure scores for the PFS model, while the right one illustrates the f-measure scores for the 
MFS model.  

 

Similarly, there are ten groups of box graphs in Figure 6, where each group stands for the mutants obtained by 

performing one of 10 mutation operators. F-measure scores are compared in each group.  
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Figure 1. Recall scores of the sets of input variables related to the MFSs and the high-score PFSs (for faults in 20 original Boolean expressions) 
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Figure 2. Recall scores of the sets of input variables related to the MFSs and the high-score PFSs (for faults with ten fault types) 
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Figure 3. Precision scores of the sets of input variables related to the MFSs and the high-score PFSs (for faults in 20 original Boolean expressions) 
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Figure 4. Precision scores of the sets of input variables related to the MFSs and the high-score PFSs (for faults with ten fault types) 
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Figure 5. F-measure scores of the sets of input variables related to the MFSs and the high-score PFSs (for faults in 20 original Boolean expressions) 
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Figure 6. F-measure scores of the sets of input variables related to the MFSs and the high-score PFSs (for faults with ten fault types) 

 

4.4. Finding and Remarks 

 

The experimental results show the following: (1) the MFS model usually has significant advantages in aspect of recall for 

the ASF, ENF, LNF, LRF, and ORF faults in TCAS4, TCAS7, TCAS12, TCAS14, and TCAS20. (2) The PFS model usually 

has significant advantages in terms of precision for the ASF, CCF, CDF, MLF, SA0, and SA1 faults in almost all the 

Boolean expressions except TCAS2, TCAS3, TCAS5, and TCAS6. (3) In terms of f-measure, the MFS model has 

advantages for the ENF, LNF, LRF, and ORF faults, while the PFS model has advantages for the CCF, CDF, MLF, SA0, and 

SA1 faults. Overall, the PFS model has advantages over the MFS model for faults in almost all the Boolean expressions 

except TCAS2, TCAS3, TCAS5, and TCAS6.  

 

These results suggest that the PFS model is more competitive than the MFS model in the scenario of input-level fault 

localization. The reasons include both the advantages in terms of precision and the advantages in terms of f-measure.  

 

5. Threats to Validity 

 

Threats to internal validity are concerned with the uncontrolled factors that may influence the experimental results. The first 

uncontrolled factor is the correctness of the set of fault-relevant input variables or the set of failure-causing schema-related 
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input variables. In our experiment, actual fault-relevant input variables for each fault are set according to the definition of 

the corresponding fault type. Minimal and probabilistic failure-causing schemas for each fault are obtained by an open-
sourced tool [11-12]. All the intermediate results regarding fault-relevant input variables, MFS-related input variables, and 

PFS-related input variables are tested to avoid any possible incorrectness. Another uncontrolled factor involves the different 

sets of test cases that are utilized to find MFSs and PFSs and may lead to different results. In our experiment, for each 

Boolean expression, the exhaustive test set is executed and analysed to identify the real MFSs and PFSs for each fault.   

 

Threats to external validity are concerned with whether the results in experiments are generalizable. In our experiment, 

experimental subjects include 20 general-form Boolean expressions extracted from the TCAS system and 19,131 non-

equivalent mutants generated by ten popular mutation operators in the field of Boolean-specification testing. These 

experimental subjects have been widely used as benchmarks in the field of Boolean-specification testing. It is reasonable 

that they could represent realistic cases for comparing the combinatorial testing technique and the random testing technique.  

 

6. Conclusions and Future Works 

 

Both the MFS model and the PFS model were proposed to describe characteristics of failure test cases. In order to examine 

which model (MFS or PFS) can help software engineers debug programs more efficiently, we designed an experiment on 

Boolean specifications to compare which model can localize fault-relevant input variables more preciously. Experimental 

results indicated the MFS model usually has significant advantages in terms of recall, while the PFS model usually has 

significant advantages in terms of both precision and f-measure. This means that the PFS model is more competitive than 

the MFS model in the scenario of input-level fault localization.  

 

Although significant results regarding the comparison of the MFS model and the PFS model have been presented in this 

paper, there are still many works required in the future. (1) Some other experimental subjects except Boolean specifications 

should be taken into consideration in the comparison between the MFS model and the PFS model to generalize the results 
concluded in this paper. (2) Many input-level fault localization algorithms, including non-adaptive methods [13-15] and 

adaptive methods [16-18], have been proposed for the MFS model. Similarly, PFS-based algorithms should be also 

developed to localize high-score PFSs effectively and efficiently. (3) In the initial version of the PFS model, the metric 

score is defined as the product of failure-causing probability and coverage probability. More approaches to measure and 

select PFSs are required in the future.  
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