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Abstract 

In the past years, many resources have been allocated to research on deep learning networks for better classification and recognition. 

These models have higher accuracy and wider application contexts, but the weakness of easily being attacked by adversarial examples has 

raised our concern. It is widely acknowledged that the reliability of many safety-critical systems must be confirmed. However, not all 

systems have sufficient robustness, which makes it necessary to test these models before going into service. In this work, we introduce 

FDFuzz, an automated fuzzing technique that exposes incorrect behaviors of neural networks. Under the guidance of the neuron coverage 

metric, the fuzzing process aims to find those examples to let the network make mistakes via mutating inputs, which are then correctly 

classified. FDFuzz employs a feature detection technique to analyze input images and improve the efficiency of mutation by features of 

keypoints. Compared with TensorFuzz, the state-of-the-art open source library for neural network testing, FDFuzz demonstrates higher 

efficiency in generating adversarial examples and makes better use of elements in corpus. Although our mutation function consumes more 

time to generate new elements, it can generate 250% more adversarial examples and save testing time. 
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1. Introduction 

 

Deep learning was first proposed as machine learning in 1986 [1], when Hinton et al. applied the backpropagation 

algorithm into multilayer perceptron [2] and regained the attention to AI. Immediately after, LeNet [3] was created, and 

it achieved great success in handwritten number recognition. Since 2000, deep learning has normally been called 

artificial neural networks. 

 

After many years of research, a large number of excellent deep learning models have been established for different 

contexts, including face recognition, medical diagnosis, natural language processing, autonomous driving, and smart 

contracts. Compared with traditional models, neural networks perform much better in many aspects, including perception, 

learning, and cognition. Thus, these models have more potential to do well in complex tasks, but they do have some 

disadvantages. One of the most severe drawbacks is a lack of robustness, which means systems using deep learning models 

could be fooled by inputs triggering wrong logic. Unfortunately, these mistakes cannot be ignored, especially in safety-

critical tasks like automated driving. If a traffic light is misclassified, the safety of passengers could be threatened. 

 

Therefore, the robustness of deep learning models needs to be tested and improved. Inputs leading to the 

misclassification of deep learning systems with imperceptible mutation of original inputs are called adversarial examples. 

However, adversarial examples have a large input space, and the principle of triggering incorrect classification cannot be 

easily explained, thus making it hard to generate them manually. Considering all the difficulties of searching adversarial 

examples, we need to leverage testing techniques to improve the generation efficiency and find more of them. 

 

Several approaches have been proposed to test deep learning systems. TensorFuzz[4] is a state-of-the-art open source 

framework for neural network testing. It can be used to test most neural networks with quick mutation and coverage analysis, 
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but its efficiency is not good; it simply adds white noise to elements in a corpus. Its coverage analysis focuses only on the 

output and ignores other parts of the deep learning system. DLFuzz [5] leverages the neuron activation ratio to solve the 

feedback information and calculate the coverage. Its coverage function is much more complicated than simply obtaining the 

output summation of the neuron network, but it considers system structure more and performs better in practice. The 

mutation process of DLFuzz adds white noise to original inputs just like TensorFuzz, which is quick, but it lacks the 

guidance of generating new elements and thereby reduces the efficiency. Feature-guided black-box safety testing [6] uses 

the scale invariant feature transform (SIFT) algorithm to guide the process of mutation with features of images. However, 

the Monte Carlo tree search ignores the structure of neural network models, and consumes much more time to obtain an 

adversarial example than fuzzing. 

 

In our work, we propose FDFuzz, a coverage guided fuzzing technique with feature detection mutation process and 

neuron coverage analysis. To evaluate the efficiency of FDFuzz, we choose a LeNet model with 99% accuracy to be tested. 

With the same selected images, our FDFuzz can generate many more adversarial examples than TensorFuzz, which means 

generating each example takes slightly more time. 

 

In particular, we make the following contributions: 

 

 Aiming to find adversarial examples of deep learning systems, we propose an effective coverage-guided fuzzing 

technique called FDFuzz. 

 Our work leverage feature detection and neuron coverage analysis improve the efficiency of the testing process. 

 We prove that the mutation or coverage process in fuzzing that is simple and cheap to compute may not always be 

the best choice. 

 

2. Motivation 

 

In this section, we give an overview of coverage-guided fuzzing and introduce the feature detection algorithm SIFT and 

neuron coverage. 

 

2.1. Coverage-Guided Fuzzing 

 

Fuzz testing, or fuzzing, is not a brand new technique in software testing. It has proven itself of its efficiency in searching 

for vulnerabilities of systems, and AFL [7] is the most famous of them.  

 

During the testing process, seeds are sampled from valid input cases and transformed into a number of original 

elements. These elements are created to initialize a corpus as a collection for fuzzing. In the feedback loop, some of the 

elements are chosen from the corpus to be mutated for generating new inputs to the system. Regardless of whether these 

new inputs cause crash and errors or not, their coverage is calculated for evaluation based on the feedback information. 

Some of the new inputs have potential value to trigger vulnerabilities, and they will be added to the corpus for the next loop. 

 

It is widely acknowledged that there is a large gap between deep learning systems and traditional software systems, 

caused by distinct structures and data formats. However, they share a similar testing target of discovering vulnerabilities of 

systems, which make it possible to apply the fuzzing technique to deep learning systems. Considering the implementation of 

deep learning systems, traditional ways of mutating and calculating coverage cannot be used directly, so we must leverage 

other methods as a substitution. 

 

2.2. SIFT Algorithm 

 

The scale invariant feature transform (SIFT) algorithm [8] is an effective and reliable computer vision technique that 

transforms information exhumed from an image into a set of feature vectors. These features are stable and invariant to 

changes of rotation, scaling, brightness, or noise. First, the Gaussian kernel is used to generate different scales of an image, 

simulating human perception at various angles. These scales are calculated as follows: 

 

 𝐿(𝑥, 𝑦, 𝜎) =  𝐺(𝑥, 𝑦, 𝜎) ×  𝐼(𝑥, 𝑦) (1) 

 

Where 𝐺(𝑥, 𝑦, 𝜎) is a two-dimensional Gaussian kernel, and different values of 𝜎 represent different angles. 
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Then, we compare the pixel value of the same point in different angles, together with different points within one angle, 

to detect the extrema areas. Some of these areas are noises, so we leverage a Hessian matrix of the intensity and Taylor 

expansion to remove them. After that, we can locate keypoints successfully and calculate their size and orientation. The 

descriptor of each keypoint finally transforms location and other information into a 128-element feature vector, indicating 

the gradient and size of features. 

 

In addition to keypoints, all the pixels in an image could affect the recognition result. Our work leverages a Gaussian 

mixture model based on these keypoints [6], to ensure a comprehensive analysis of all pixels. 

 

2.3. Neuron Coverage 

 

The concept of neuron coverage was first proposed by DeepXplore [9], a well-known white-box testing framework. Rather 

than merely calculate the output of the final layer, neuron coverage refers to each layer of the neural network model and 

evaluates the output value of each neuron. A neuron is treated as activated if its value is higher than the threshold, and the 

coverage of the new element is calculated as the ratio of activated neurons. We leverage the same way to evaluate coverage 

of new elements as TensorFuzz. 

 

3. Our Approach 

 

Figure 1 shows the architecture of FDFuzz. We implement FDFuzz to handwrite number recognition tasks, which is a basic 

task to analyze the efficiency of generating adversarial examples of deep learning systems. 

 

 
Figure 1. Architecture of FDFuzz 

 

The original input contains images selected from the training dataset. After transforming it into a batch of original 

elements, we create a corpus to keep them and all other elements generated in fuzzing. The mutation function chooses some 

elements in the corpus each time and generates new elements by changing pixel values. Then, the elements are put into the 

deep learning system to check whether they are correctly recognized. The elements causing mistakes will be treated as 

adversarial examples. Others will be collected and analyzed by the coverage function, and their coverage determines 

whether they will be added into the corpus for the next loop. 

 

3.1. Mutation 

 

The mutation process is shown in Figure 2. An element selected from the corpus contains abundant information, including 

image resources, labels, and other data like coverage, and we need to obtain the image resources first for detection. Then, 

we apply the SIFT algorithm implemented in OpenCV[10], a well-known computer version library, to obtain keypoints of 

the image with the response strength. Not all these points have close response strength; some of them are so weak that they 

should be removed to ensure efficiency. Then, we utilize these points to fit Gaussian distribution models to mutate other 

pixels. The mutation degree of the pixel value is determined by the location of the pixel and response strength of keypoints. 

 

3.2. Coverage 

 

The neuron coverage process is shown in Figure 3. After giving a new element to the system, outputs of neurons in each 

layer can be fetched by the fetch function in the TensorFuzz library. We analyze output values and calculate the activation 

ratio as the coverage of the neural network model. 
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Figure 2. Algorithm of mutation process 

 

 
Figure 3. Algorithm of neuron coverage process 

 

4. Evaluation 

 

We finally decide to design two experiments to assess the efficiency of FDFuzz and TensorFuzz in different aspects. 

Experimental results can indicate that although FDFuzz needs much more time to generate each new elements, it can find 

more adversarial examples than TensorFuzz as complementary, which improves the overall efficiency of fuzzing as a result.  

 

4.1. Experimental Setup  

 

To simplify our experiment, we select MNIST[11] as our training dataset, and both experiments are based on a classic five-

layer LeNet-1[3], which contains two convolution layers and two pooling layers. The structure of the LeNet-1 model to be 

tested is shown in Table 1. After training 100,000 steps with the Adadelta optimizer and a learning rate of 0.1, the accuracy 

of recognizing handwriting numbers is almost 99%. 
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Table 1. Structure of neuron network model  

Layer name Layer size 

convolution 5×5×4 

maxpooling 2×2 

convolution 5×5×4 

maxpooling 2×2 

flatten  

dense+softmax 10 

 

FDFuzz is implemented in Python 3.6 based on the famous framework TensorFlow, which provides convenient 

interfaces for model construction and access to intermediate output of neurons in the model. The evaluation process is 

conducted on a computer with i9-8950HK @2.90GHz, 16.0GB RAM, and an NVIDIA GTX 1080 GPU. 

 

As we mentioned before, two experiments are prepared to evaluate the efficiency of TensorFuzz and FDFuzz in 

different aspects. The first experiment analyzes which can generate more adversarial examples with the same batch of 

original inputs, which means the seeds given to TensorFuzz and FDFuzz are the same. Another experiment shows how 

much time it takes for FDFuzz and TensorFuzz to generate the same number of adversarial examples, regardless of whether 

they are the same or not. 

 

4.2. Experiment of Generation Efficiency 

 

To make the process of our experiment clear, we set a restriction that the sample function must fetch only one image from 

MNIST each time with its label to initialize the same corpus for FDFuzz and TensorFuzz. The aim is to avoid the 

disturbance of batch size and content on the results of the experiment. Then, we set the total number of experiments to 

generate adversarial examples, so as to determine when the experiment needs to stop. It cannot be guaranteed that an 

adversarial example is found each time. 

 

Figure 4 summarizes the results. The red spots indicate the time for FDFuzz to generate an adversarial example, while 

the green spots are related to TensorFuzz. With the total number of 50 attempts, FDFuzz generates ten more adversarial 

examples than TensorFuzz. To display the results more clearly, some of the examples that took significantly more time than 

ten seconds are not shown in Figure 1. All the details for time consumption are shown in Table 2, not including those failing 

to create adversarial examples. In this experiment, FDFuzz has a much higher efficiency (almost 250%) than TensorFuzz in 

generating adversarial examples. This indicates that our tool makes the testing process more complicated but is likely to 

have better performance than Tensorflow. 

 

 
Figure 4. Comparison of numbers 

 

4.3. Experiment of Generation Time 

 

In this experiment, we analyze how much time is taken to generate the same number of adversarial examples with the same 

origin corpus. Considering the fact that FDFuzz leverages the SIFT algorithm for generation and neuron coverage for 

evaluation to improve the performance, it is natural to consume much more time to deal with an adversarial example. If 

FDFuzz can save more time in total, it is a better choice. 
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Table 2. Time consumption 

Index TensorFuzz FDFuzz 

2 -1 0.9208 

3 0.0995 0.7994 

4 -1 2.0268 

5 -1 2.3008 

10 -1 4.2638 

12 0.0077 0.6951 

14 -1 37.7725 

19 -1 15.6905 

20 -1 5.7677 

21 -1 10.7386 

26 0.3788 1.3709 

29 0.8972 -1 

30 -1 12.3731 

38 -1 11.8466 

48 -1 6.8629 

 

As is shown in Figure 5, FDFuzz needs more time for each adversarial example. However, the advantage in quantity 

helps FDFuzz save a large amount of time and perform much better.  

 

 
Figure 5. Comparison of Time 

 

5. Related Work 

 

In this section, we introduce other works related to FDFuzz. As we explained above, fuzzing technique, especially 

coverage-guided fuzzing, has been widely applied in traditional software testing, like AFL [7] and LibFuzzer [12]. It has 

been expanded to improve testing efficiency; for example, [13] leveraged a Markov chain to decide which operation of 

mutation should be chosen next and designed various kinds of power function to affect the number of new elements 

generated by mutation. FasterFuzz [22] uses Generative Adversarial Network (GAN) models to reinitialize the system with 

novel seed files, in order to improve the performance of AFL. 

 

However, as mentioned in [5], there is a large gap between the implementation of traditional software and neuron 

network models, which makes it complicated to work without adjustment. Researchers have noticed that there may be a 
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chance to win again by CGF. These works cover both the white-box manners, black-box manners, and grey-box manners [2, 

4-6, 9, 12-20]. Considering the different methods of testing objects and evaluation indexes, it is difficult to determine which 

is better. [6] used the SIFT algorithm, but it selected Monte Carlo tree search for searching. DLFuzz [5] is based on [9] with 

neuron coverage, and its mutation part is similar to TensorFuzz. The leverage neuron coverage in [9] and [16] dealt with 

feedback information, but the implementation was not the same. DeepHunter[21] presents a coverage-guided fuzz testing 

framework for deep neural networks, which generates new semantically preserved tests with a metamorphic mutation 

strategy, and guides the test generation with multiple extensible coverage criteria as feedback. Besides, DeepHunter 

incorporates both diversity-based and recency-based seed selection. 

 

Thus, we believe that there is still not an existing process or model that is more efficient and accurate than other ones in 

all usage scenarios. Considering the different requirements and restrictions, we must select our tools and methods, and many 

approaches are complementary to each other in various situations. 

 

6. Conclusions 

 

We design and implement FDFuzz as a new fuzzing framework for deep learning systems. FDFuzz leverages the coverage-

guided fuzzing technique and combines feature detection and neuron coverage. Compared with TensorFuzz, we have 

demonstrated its efficiency in generating and discovering adversarial examples. 

 

In the future, we plan to explore other choices of mutation and coverage calculation. Additionally, we plan to modify 

the implementation of other parts in fuzzing, such as sample function and power function (dynamically determining the 

number of mutated elements). 
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