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Abstract 

Hyper-sphere Support vector machine (SVM) is a widely used machine learning method for multi-class classification problems such as 

image recognition, text classification, or handwriting recognition. In most cases, only one hyper-sphere optimization problem is computed 

to solve the problem. However, there are many complex applications with complicated data distributions. In these cases, the computation 

cost will be increased with unsatisfied classification results if only one support vector machine is adopted as the classification decision 

rule. To achieve good classification performance, a piecewise combination of the hyper-sphere support vector machine is put forward in 

this paper based on the analysis of the data sample distribution. First, statistical analysis is adopted for the original data. Then, the k-

means cluster algorithm is introduced to compute cluster centers for different classes of the data. For the n classes classification problem, 

m (m > n) hyper-spheres are computed to solve the objective problems based on the number of data centers. For simple sphere-

distribution and locally linearly separable distribution cases, the minimum enclosing and maximum excluding support vector machine and 

the combination of hyper-sphere support vector machine are defined. Experimental results show that different support vector machines for 

different data distributions will improve the final classification performance. 
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1. Introduction 

 

Binary SVM was first put forward in the machine learning field based on statistical theory and has been successfully applied 

in many real applications [1-2]. Focused on finding a maximum-margin hyper-plane separating training samples, binary 

SVM tries to maximize the width of the gap between the two classes. For a new test sample, its classification decision can 

be decided by this optimal hyper-plane restricted with support vectors. In real applications, it is hard to classify only two 

classes. There are many methods to extend binary SVM to multiclass classification [3-4]. For example, a multi-class SVM 

classifier is defined by combining multiple two-class SVMs. The one-against-all method is a typical example that solves 

multiclass classification by constructing k binary classifiers. In this method, each SVM separates one class with all other 

remaining classes. One-against-one is another method that constructs ( 1) 2k k  SVM classifiers, with each SVM separating 

a pair of classes. The shortage for these methods is the high computation cost, because at least ( 1) 2k k  quadratic 

programming (QP) optimization problems need to be solved.  

 

Based on one-class SVM [5-7], sphere-structured SVM is presented to solve the problem of high computation costs. The 

difference between traditional SVM and hyper-sphere SVM is the decision rule. Hyper-sphere SVM substitutes the hyper-

plane of binary SVM with a class-specific hyper-sphere. The main idea of a sphere-structured SVM is to find a minimum 

bounding hyper-sphere, which restricts all training samples belonging to one class within the hyper-sphere as much as 

possible. Restrictions for each bounding hyper-sphere are its center and its radius. Similar with the idea of maximum-margin 

in binary SVM, this method adopts the smallest radius to get the maximized gap between different bounding hyper-spheres. 

http://www.ijpe-online.com/
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Because the resulting hyper-spheres for each class is obtained based on direct computation of quadratic programming (QP) 

optimization, its computation cost is relatively lower than that of the other combination methods. 

 

In most cases, only one objective function is adopted, not considering data distribution rules. However, data distribution 

rules are very complicated in many applications. One objective function may lead to almost all training samples being 

computed as support vectors, increasing the computation cost for the objective function. Thus, the computation cost for a 

new test sample is high, with unsatisfied classification accuracy due to solution solving with all support vectors. To solve 

this problem, a piecewise combination of hyper-sphere SVM is put forward, taking all data distribution rules into 

consideration and adopting different decision rules to improve the classification performance. The main idea of our method 

is to get statistical rules for the original training dataset, compute clustering centers, and decide the objective function based 

on sample distribution to get the satisfied classification accuracy in real applications. 

 

The remainder of the present study is structured as follows. Section 2 gives a summarization of SVM and sphere-

structured SVM. Section 3 introduces the statistical analysis of data distribution, mathematical description of our piecewise 

combination of hyper-sphere SVM, and framework of the proposed method. To verify the proposed method, Section 4 

discusses some experimental results. Section 5 gives the conclusions.  

 

2. Related Work 

 

The classification problem to solve real applications can be divided into four steps: data preprocessing, feature extraction 

and feature selection, objective function solving, and classification accuracy test to improve the objective function. The first 

two steps are not our focus, and our study started with a normalized training dataset and testing dataset.  

 

Many studies have focused on extending binary SVM to multi-class classification problems. Vural and Dy [8] 

introduced a framework called divide-by-2 (DB2) to extend support vector machines (SVM) to multi-class problems. Mele 

and Maver [9] used hierarchical SVMs to complete object recognition. Benabdeslem et al. [10] proposed a dendogram-

based SVM for multi-class classification. Chmielnicki et al. [11] combined 1-v-1 and 1-v-r strategies to improve the 

multiclass SVM classifier. Le et al. [12] proposed a theoretical framework for multi-sphere support vector data description. 

Cevikalp and Triggs [13] adopted cascades of binary and one-class classifiers to complete visual object detection. 

 

Sphere-structured SVM has been studied in-depth since its introduction. Xiao et al. [14] studied how to detect outliers 

on multi-distribution data with multi-sphere support vector data description. Liu et al. [15] discussed minimum enclosing 

and maximum excluding machine for pattern description and discrimination. Yang et al. [16] adopted an unsupervised 

quarter-sphere support vector machine to complete the online outlier detection technique for wireless sensor networks. Liu 

et al. [17-18] proposed a fuzzy hyper-sphere SVM and a multiple sub-hyper-spheres SVM for multi-class classification. 

 

Multi-class classification SVM has been widely applied in the fields of text categorization, sounds recognition, image 

processing, and image annotation and has achieved satisfying results. Rabaoui [19] presented an improved one-class SVM 

classifier for sound classification. Jordi et al. [20] applied semisupervised one-class support vector machines for 

classification of remote sensing data. Mohanty [21] utilized SVM to identify speakers during Oriya speech recognition. Sun 

et al. [22] provided a comparative study of imbalanced text classification using SVM. 

 

3. Method 

 

3.1. Analysis of Data Distribution 

 

There are three cases for data distribution for samples: sphere-inclusion-distribution, multi locally centered distribution, and 

common distribution. In many cases, only one SVM objective function is adopted to solve the classification problem, not 

considering data distribution rules, which will lead to an increase in computation cost with all training samples as support 

vectors. Classification accuracy for new test points may be unsatisfied because of the training process.  

 

(1) Samples satisfy the sphere-inclusion-distribution if two data centers are very close, the data in each class is evenly 

distributed, and data of one class is included in another class. The simplest example is shown in Figure 1. With hyper-sphere 

SVM as the objective function, two bounding hyper-sphere are obtained to decide the classification for samples. For this 

binary classification example, the solution of traditional binary SVM is a nearly circular curve with many support vectors, 

as shown in Figure 1(b). The difference between hyper-sphere SVM and traditional binary SVM is the number of support 

vectors, which will increase the computation cost for new test points.  
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              (a) Hyper-sphere SVM result for 2D samples                    (b) Traditional binary SVM result for the same samples 

Figure 1. An example of sphere-inclusion distribution in 2D case 

 

For sphere-inclusion-distribution case, points coordinates are sorted first based on mathematical statistical tools. Then 

the two-means clustering method is adopted to get two data centers, comparing their distance difference. If data points for 

each class in each dimension are evenly distributed by counting data points in each dimension and sorted by some rules, the 

data of the two classes is considered a sphere-inclusion distribution.  

 

(2) Samples satisfy the multi locally centered distribution if there are multi locally centers for one class data and there 

are no other fixed distribution rules for the data of this class. The solution process begins with sorting points' coordinates. 

Then, the k-means clustering method is adopted to get clustering centers. If there is more than one center for samples of one 

class, multiple hyper-sphere SVM objective functions are computed to get the final resulting decision spheres.  

 

Figure 2 shows a simple example in 2D. Blue asterisk marks and green asterisk marks belong to class 1. Red dots and 

pink dots belong to class 2. The original dataset is shown in Figure 2(a). There are four data centers marked with a black '×'. 

Four bounding spheres (circles) are computed to obtain the final classification result, as shown in Figure 2(b). Two blue 

bounding spheres are for class 1, and two red bounding spheres are for class 2. For a new test point, it is easy to decide its 

classification based on the four spheres with good classification performance.  
 

 
                        (a) Original data for two classes                        (b) Classification result for two classes with four centers 

Figure 2. An example of four hyper-spheres for two classes with four data centers in 2D 

 

(3) Samples are considered common distribution if no distribution rules can be found based on mathematical statistical 

analysis. Only common hyper-sphere SVM is adopted as the objective function. The special case for this decision process is 

that the spheres are intersected with each other. Data distribution in the intersections are analyzed first, and then the decision 

class is decided by different strategies. If the training samples of two classes in the intersection can be classified by 

intersecting the hyper-plane with two hyper-spheres, then new test samples can be decided by this plane. If the training 

samples of two classes in the intersection can be approximately linearly classified, then new test samples can be classified by 

the standard optimal binary-SVM hyper-plane. If the training samples of two classes in the intersection cannot be linearly 

classified, then new test samples can be decided by introducing a kernel function to obtain the optimal classification hyper-

plane. If the training examples belong to only one class, then new test samples can be classified by the exclusion method.  
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3.2. Mathematical Description of Piecewise Combination of Hyper-Sphere Support Vector Machine 

 

Without loss of generalization, slack variables 
i  are introduced by permitting isolated points, and a nonlinear mapping   

is introduced by transforming the training samples into a high dimensional feature space to solve nonlinear separation 

problems and then compute the hyper-sphere in the feature space. Suppose there are n dimensional training samples of m 

classes to be classified. The objective is to solve the k-class classification problem, that is, 

1 2{ , 1, , },  ( 1, , , , , )n

k i k k k ksX R i l k m m m   x . For a class m, there may be multiple corresponding minimum 

bounding hyper-spheres, such as 
1 2,  k kS S , and 

ksS . Then, finding the minimum bounding hyper-sphere of each class that 

encloses all the training examples of that class can be computed by solving the following constrained quadratic optimization 

problem in Equation (1).  
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For class k, the minimum bounding hyper-sphere 
ktS  is decided by its center 

ktc  and radius 
ktR . s is the number of 

cluster centers for class k. 
ktC  is the penalty factor, and 0i   are slack variables. The difference between common hyper-

sphere SVM and our piecewise combination of hyper-sphere SVM is the number of minimum bounding spheres for one 

class. By introducing Lagrange multipliers ,  i i  , the Lagrange polynomial can be written as Equation (2).  
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Equations (3) to (5) can be obtained by taking the partial directives of L with respect to ,  ,  kt kt iR c  .  
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Substituting them back into Equation (2), the original optimization problem becomes its dual optimization problem, 

with the format shown in Equation (6). 
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Without computing the introducing nonlinear map function, the kernel trick is adopted by computing inner products in 

the feature space, that is, ( , ) ( ) ( )i j i j   x x x x . The Lagrange multipliers can be obtained by solving the dual quadratic 

programming problem. Support vectors are the vectors 
ix  with 0i  . Based on the above deduction process, the center 

ktc  can be computed by 2

1,

( , )
kl

kt i j i j

i j

c  


  x x . The resulting decision function can be computed as Equation (7).  

 

 
2

, 1 1

( ) sgn( ( , ) 2 ( , ) ( , ))
kt ktl l

kt kt i j i j i i

i j i

f R   
 

      x x x x x x x  (7) 

 

For any support vector, the radius 
ktR  can be computed by equating Equation (7) to zero. If ( ) 0ktf x , the new point x 

falls inside of the hyper-sphere based on Equation (7). Similarly, x falls outside of the hyper-sphere if ( ) 0ktf x  and x lies 

on the hyper-sphere if ( ) 0ktf x . In 2D cases, the bounding sphere is a circle. In 3D cases, the bounding spheres are like 

bubbles, as shown in Figure 3. There are five spheres, corresponding to five classes.  

 

                     
Figure 3. Hyper-sphere SVM result for 3D samples 

 

3.3. Framework of the Proposed Method 
 

The framework of the proposed method consists of three processes: data preprocessing, hyper-sphere solving, and 

classification testing. It is often applied to obtain classifications in the field of multiple classification. The proposed method 

follows eight steps to complete the classification process.  

 

 Step 1 All training samples are sorted by their coordinates. Feature extraction and selection are not our consideration.  

 Step 2 k cluster centers are computed by the k-means clustering algorithm. 

 Step 3 Binary SVM is adopted to get the optimal hyper-plane if k = 2. The algorithm stops if the classification 

accuracy for test samples are acceptable; otherwise, it proceeds to Step 4. If k > 2, it proceeds to Step 5. 

 Step 4 k = 2, and the distance between two clusters is lower than the predefined threshold. If the samples of two 

classes in each dimension are evenly distributed by counting samples in each dimension, the data of the two classes 

is considered a sphere-inclusion distribution. Simple hyper-sphere SVM is called to the optimal hyper-sphere. If the 

classification accuracy for the test samples meets the precision requirement, the algorithm proceeds to Step 7; 

otherwise, it returns to Step 3 after re-computation of two subsets of the original training samples.  

 Step 5 Class labels are marked for k cluster centers. For example, five centers are denoted as 11 12 15, , ,y y y  if there 

are five cluster centers for class 1. Similarly, five centers for class 2 are denoted as 21 22 25, , ,y y y . 

 Step 6 Each cluster center is compared with its neighbor cluster centers. Centers of the same class are computed 

together to get the combination of hyper-sphere SVMs.  

 Step 7 For new samples or test samples, Euclidean distances between them with k clustering centers are computed to 

choose the combination of hyper-sphere SVMs. The classification result is the maximization of the decision function. 

 Step 8 If classification accuracy for test samples meets the precision requirement, the algorithm stops. Otherwise, 

the subsets of the two closest clustering centers are chosen to continue the computation process, and the algorithm 

returns to Step 4. 
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4. Experiments 

 

To show the classification result of our method, a simulation example is given as follows. There are only data coming from 

two classes in Figure 4. Red points belong to one class, and blue points belong to the other class. Clearly, these data points 

are nonlinear and separable. The classification result based on traditional SVM with polynomial kernel is shown in Figure 

4(b). If a 2D hyper-sphere SVM is adopted, the result shown in Figure 4(c) is achieved. Its computation cost is lower than 

traditional binary SVM. As shown in Figure 4(b), almost every point are considered as support vectors. So the decision for 

future test point consists of computation for all points. For a new test point for the bounding sphere, only one sphere is 

needed to get the final classification result. So the classification performance is better for future classification than 

polynomial result.  

 

 
(a) Data distribution for a simulation example in 2D      (b) Traditional SVM classification result               (c) Multiple hyper-spheres for the case 

Figure 4. The original cell image and the segmented cell image 

 

Figure 5 shows a 3D example. In 3D cases, the bounding circles change into spheres. If all the data coming from five 

classes are independent, their spheres are also independent, as shown in Figure 5(a). If the data coming from two classes are 

intersected, the resulting hyper-spheres are also intersected, as shown by the two middle blue spheres in Figure 5(b). For a 

new test point in case of Figure 5(b), some decision strategy is adopted to decide its classification result, as in [17].  

 

 
(a) Five independent hyper-spheres for five classes                  (b) Two intersected hyper-spheres for five classes 

Figure 5. An example of five classes classification in 3D case 

 

Figure 6 shows a real application example. It is a gene classification example after feature extraction and normalization. 

As shown in Figure 6(a), these points are relatively complicated because there are no obvious distribution rules. A 

classification result based on traditional SVM with RBF Gaussian kernel is shown in Figure 6(b). This curve is complicated 

as well, with many points as support vectors. As shown in Figure 6(c), many bounding spheres are obtained if the threshold 

for data centers is relatively small. However, for a new test point, its decision is only dependent on five or ten points. The 

computation cost is relatively lower than that of the curve in Figure 6(b).  

 

Another real application example is an action recognition system from videos. The training dataset comes from camera 

data placed in our university and some special recorded videos by our students. With the data preprocessing of foreground 

extraction and morphological operations optimization, features such as trajectory features, shape features, and KLT tracking 
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points are extracted for each action recognition. These features are input into the proposed piecewise combination of hyper-

sphere SVMs. With these training samples, normal actions can be recognized by our hyper-sphere SVM classifier, and new 

abnormal actions can be recognized in future videos. Because most of the actions captured in videos belong to normal 

actions, it is easy to recognize normal actions. In our dataset, normal actions consist of walking, running, swimming, 

standing, and so on. Recognized actions of fighting and running are shown in Figure 7.  
 

 
(a) Data distribution for a real application in 2D case     (b) Traditional SVM classification result                  (c) Multiple hyper-spheres for the case 

Figure 6. A real application example based on traditional SVM and our multiple hyper-sphere SVM 

 

 
Figure 7. A real application example of action recognition for videos 

 

Table 1 shows the comparison results between our method and the traditional combination of binary SVMs. The number 

of training samples is 2500, and testing samples is 500. Training data and testing data were randomly selected for each 

experiment. All experiments were performed ten times, and the data in Table 1 shows the average value of each indicator.  

 
Table 1. Comparison of action recognition results 

Type of Algorithm Training Time No. of Support Vector Accuracy (%) 

One-against-one binary SVM 1997s 1145 78.6 

One-against-all binary SVM 1982s 1235 76.3 

Combination of binary SVMs 1927s 1032 82.1 

Common hyper-sphere SVM 1752s 692 85.6 

Our piecewise combination of hyper-sphere SVMs 1306s 580 89.6 

 

5. Conclusions 

 

Compared with combining binary SVM classifiers to solve multi-class classification problems, sphere-structured SVM is 

not only convenient and saves computation costs but also reduces the error probability for new test samples. The present 

study focuses on the data distribution rules and corresponding optimized objective function. Training samples follow three 

main data distribution rules. A piecewise combination of hyper-sphere SVMs is proposed to improve the classification 

performance. The experimental results demonstrate the effectiveness of the proposed method compared with the results 

based on combination of binary SVMs. The effectiveness of different types of support vector machines is also analyzed 

based on these results, and final classification performance is improved. 
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