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Abstract 

A more widely used hybrid model of support vector regression (SVR) and autoregressive integrated moving average (ARIMA) based on 

Ensemble Empirical Mode Decomposition (EEMD) is proposed for failure time series prediction by taking advantage of the SVR model 

to forecast the nonlinear part of failure time series and the ARIMA model to predict the linear basic part. It firstly uses EEMD to 

decompose the original failure sequence into several significant fluctuation components and a trend component, and then it utilizes SVR 

and ARIMA to forecast them separately. The performance of the presented model is measured against other unitary models such as Holt-

Winters, autoregressive integrated moving average, multiple linear regression, and group method of data handling of seven published 

nonlinear non-stationary failure datasets. The comparison results indicate that the proposed model outperforms other techniques and can 

be utilized as a promising tool for failure data forecast applications. 
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1. Introduction 

 

Software technologies are widely used nowadays, and they play a key role in achieving highly complicated and safety-

critical missions in many fields. The process of software development is increasingly complicated, and the difficulty of 

software quality management increases correspondingly, making the performance of software more difficult to be evaluated 

than ever before. The reliability is one of the important indicators to measure the quality of software. It refers to the 

possibility that the software can perform its intended functions during a period of running time without any failure [1]. 

Software reliability analysis involves using statistical methods to establish the corresponding model based on software 

failure data and then evaluate and predict the software’s reliability. The software reliability model can be divided into two 

categories in accordance with the principle of prediction: analysis model and data-driven model [2]. The analysis model, 

such as software reliability growth models (SRGM), is often difficult to achieve ideal modeling and prediction results due to 

unsatisfactory assumptions in practical applications [3]. The data-driven model has good adaptive ability because it does not 

make any assumptions about software internal defects, failure, and troubleshooting procedures, and it has been gradually 

proven to be an effective method for studying software failure data [4]. 

 

Numerous single data-driven models, such as Auto-Regressive Integrated Moving Average (ARIMA) [5], Support 

Vector Regression (SVR) [4], and Artificial Neural Network (ANN) [6], have been applied effectively to study failure data 

[7]. These data are in regular patterns and have limited data points, but for more complex failure time series data with no 

obvious patterns, such as the nonlinear and non-stationary characteristics, the unitary model cannot always predict it 

effectively (seen in section 3). The reason for this result is that the unitary model is only suitable for data with certain 

characteristics. Therefore, we consider decomposing the failure time series into subsequences to obtain different features 

and fitting them respectively. For data decomposition, Ensemble Empirical Mode Decomposition (EEMD) is usually 

applied. Wang et al. utilized the ARIMA model based on EEMD decomposition to forecast annual runoff time series [8]. 
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Plakandaras et al. used SVR technology based on EEMD decomposition and Elastic Net feature selection to forecast U.S. 

housing prices from 1890 to 2012 [9]. Žvokelj et al. developed multi-ICA technology based on EEMD decomposition to 

detect and diagnose rotary bearing failure [10]. These works commonly use EEMD as a preprocessing technique. 

Predictions of all components are completed by one model, and then the model result can be obtained by combining the 

multiple component predictions. Since the components obtained by EEMD have different characteristics, unified prediction 

of all components by a single model may lead to a loss of data information. To capture the different characteristics reflected 

by components, multiple models are considered for prediction and combination. 

 

Based on this framework, a combined technique is proposed to focus on the non-stationary nonlinear characteristics of 

software failure sequence. In EEMD decomposition, two significant components recognized as the fluctuation and trend are 

extracted from the original failure time series data, and two models named trend-ARIMA and fluctuation-SVR are 

individually developed to fit and forecast the two components.  

 

The rest of this paper is organized as follows. In Section 2, the EEMD combinational model is proposed. In Section 3, 

the experimental results are discussed. Finally, the conclusions are drawn. 

 

2. Combined Model  

 

2.1. Reliability Prediction Framework for Combined Models  

 

Different models can be used for combinational prediction according to the results of EEMD decomposition to make full 

use of the information reflected by the original failure data. According to the characteristics of the failure interval series 

decomposed by EEMD, the framework of the proposed EEMD-SVR-ARIMA method is shown in Figure 1. Except for the 

data preparation, there are three steps: decomposition, modeling, and combination. The following focuses on the three core 

modules of decomposition, model calculation, and parameter optimization and combination model. 

 

 
Figure 1. The framework of failure interval series analysis 

 

2.2. Ensemble Empirical Mode Decomposition 

 

Commonly used decomposition methods include short-time Fourier and wavelet analysis. This paper chooses EEMD as the 

decomposition method. EEMD utilizes the statistical characteristics of Gaussian white noise with uniform frequency 

distribution, adding auxiliary white noise to the original component to eliminate the intermittent phenomenon of the original 

component. It makes the original component have continuity at different scales. Furthermore, EEMD uses the characteristics 

of multiple uncorrelated random white noise tests to cancel the effects of noise in the decomposition results, effectively 

weakening the phenomenon of mode mixing in empirical mode decomposition [11]. The EEMD decomposition is 

adaptively acquired in an iterative manner according to the characteristics of the components, and the basis function is 

decomposed by the data itself. The basis function and the decomposition layer number are not required to be specified, 

which is a completely data-driven method. This method is intuitive, direct, and adaptive, which has obvious advantages in 

dealing with nonlinear data. 

 

The failure interval series TF and the divided training set TR and test set TE are defined as Equations (1) to (3): 

  

 1 2{ , , , }nTF x x x  (1) 
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1 2

{ , , , }
ntr tr trTR x x x  (2) 

 

 
1 2

{ , , , }
nte te teTE x x x  (3) 

 

The constraints are met as Equations (4) and (5): 

 

 ,  ,  Tr TF Te TF Tr Te     (4) 

 

 1, , , 0n n n n n ntr te t tr te tr te t N          (5) 

 

Where ntr  is the size of the training set, 
ntrx  is the time interval between the occurrence of the th

ntr  failure and the 

occurrence of the th( 1)ntr   failure, nte  is the size of the testing set, and 
ntex  is the time interval between the occurrence of 

the th

nte  failure and the occurrence of the th( 1)nte   failure. 

 

The decomposition process takes TR as the input, and the decomposition steps can refer to literature [11]. An original 

time series is decomposed into the sum of wave components and a trend component by EEMD, and the decomposed 

expression can be written as Equation (6): 

 

  2

1

,  log ( )
J

j n

j

TR TR c rE D J trE M


   :  (6) 

 

2.3. Model Calculation and Parameter Optimization 

 

A series of sub-components with obvious features, different frequency, and different amplitude are obtained from the 

original failure sequence decomposed by EEMD. Support vector machine (SVM) [12] is established for the components 

with large frequency, small amplitude, and obvious fluctuation characteristics, and the ARIMA [13] model is produced for 

the components with small frequency, large amplitude, and obvious trend characteristics. 

 

To fully reflect the correlation characteristics inside the failure series, it is necessary to construct the series data into 

phase space. According to Takens’ theory, the key of phase space construction is to select the appropriate embedded 

dimension m  and delay time   to reconstruct phase space. In this paper, the observation interval N  is taken as the delay 

time   and is the unit. That is, N  =1, with one failure difference existing. A mapping relationship between the sliding 

time window 1 2[ , , , ]t t t mx x x    and the output 1 2( , , , )t t t t mx f x x x    is established. The fluctuation components 

 1 2, , , nx x xx  is converted to Equation (7): 
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Where the single-variable failure sequence components used for the SVR model is converted to matrix form to obtain 

the correlation between its data. 

 

After the single variable failure data component is transformed into matrix form by formula (7), it can be further 

modelled according to the support vector regression learning and prediction framework of Figure 2. The former m  data is 

used to predict the th( 1)m  data, and then it is iterated successively until the end. 

 

It can be seen from Equations (7) to (10) that by controlling the embedding dimension parameter m  and the hyper-

parameters c ,  , and   of the SVR model, the generalization ability of the SVR model can be controlled. Therefore, how 

to select the four parameters reasonably and quickly has a great impact on application effectiveness and scope of the SVM. 



1164       Haiyan Sun, Jing Wu, Ji Wu, and Haiyan Yang 

 
Figure 2. The framework of support vector regression learning and prediction  

 

The determination of the embedding dimension parameter m  follows two principles: 1) it cannot be greater than half 

the length of the time components, 2) it can divide exactly the known period of the time components. For non-periodic 

failure time interval data, Lou and Jiang indicated that the best prediction effect can be obtained when m  is 5-25 [14], and 

the text is determined by 5 to 25 according to the criterion of the smallest final prediction error. In this paper, m  is 

determined in 5-25 according to the criterion of the smallest final prediction error. 

 

For the hyper-parameters c ,  , and   of the SVR model, commonly used existing mature parameter optimization 

algorithms include the grid search method [15], genetic algorithm [16], particle swarm algorithm [17], and simulated 

annealing algorithm [18]. In this paper, a practical heuristic method [19] is used to determine the coarse value of the 

parameter directly from the training data, a “good area” of the parameter is set by reducing and enlarging the coarse value of 

the parameter, and finally the grid search is used. The method selects the optimal parameters in the “good zone” according 

to the principle that the final empirical error is the smallest. 

 

An ARIMA ( , , )p d q  model is established for the trend component, where ,  and p d q  can be determined by taking the 

difference and calculating the Akaike Information Criterion (AIC) or Bayesian Information Criterion (BIC) value as its 

minimum. 

 

2.4. Combination 

 

The core idea of model prediction is to decompose the original failure time interval sequence into components of different 

strong features by EEMD, including the fluctuations and the trend, respectively establish a prediction model for the 

components, and then combine the results to obtain the prediction result. The model combination process is shown in 

Figure 1. 

 

An original failure sequence is decomposed into the sum of several wave components and one trend component by 

EEMD, and the modeling process uses two models, SVR and ARIMA. Due to the additivity of the EEMD decomposition, 

the models created by the subcomponents can be added together to obtain the final model. The expression for the model is 

given by Equation (8): 

 

 
1

 ( ) ( )
jco

J

SVRm j ARIMA

j

Combined fore s cca t r


   :  (8) 

 

3. Experimental Result 

 

In this paper, R is the development tool, which models and forecasts the failure time series by using several R packages, 

including parameter estimation, model establishment, model fitting, and prediction of failure data. The comparison results 

of EEMD decomposition, subcomponent modeling, and combination model are presented in the form of Table. At the same 

time, Excel is used to present the prediction contrast effect of the model. 
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3.1. Experimental Data  

 

To verify the effectiveness of the proposed method, this paper selects seven datasets collected by Bell Labs [20]: 5, SS1A, 

SS1B, SS1C, SS2, SS3, and SS4. They are from the real-time business system, operating system, time sharing system, and 

word processing system respectively. These datasets are all the failure time interval data of each software system. This 

paper compares and analyses the seven failure datasets and compares them with classic models such as Holt-Winters, 

ARIMA, MLR, GMDH, RVM, and SVR. In particular, the dataset SS3 is selected for EEMD decomposition, sub-

component modeling, and combined model component reconstruction prediction, which are presented in the form of figures. 

 

3.2. Model Evaluation 

 

There are many standards for evaluating the fitting effect of software reliability model on failure interval data. In this paper, 

RMSE is selected as the evaluation criterion for models. The formula is shown as Equation (9): 

 

 
2

1

1
ˆ( )

n

i i

i

RMSE x x
n 

   (9) 

 

Where ix  represents the observed value of the time interval between the thi  failure and the th( -1)i  failure, and ˆ
ix  

represents the prediction of the corresponding failure interval. 

 

3.3. Model Prediction 

 

Dataset SS3 contains 278 failure interval data. Seven IMF sub-sequences and one residual trend term are obtained after 

decomposition. The decomposition results as shown in Figure 3: 

 

 
Figure 3. The IMFs (intrinsic mode functions) of EEMD 

 

Each component in Figure 3 is treated as a component. The first 80% dataset of the component is used as the training 

set for modeling, and the corresponding model is established. The 20% dataset of the component is taken as the test set to 

verify the effectiveness of the proposed model. The SVR model is established for IMF1-IMF7, and the ARIMA model is 

established for the residual. Then, the predictions of IMFs subcomponents and the residual subcomponent are combined to 

obtain the predicted results of the original dataset SS3, as shown in Figure 4. 

 

In Figure 4, the left figure shows the prediction results and residual schematic diagram of the original dataset SS3, and 

the right figure demonstrates the software accumulative running time and failure number schematic diagram. The predicted 

and observed values of the original failure interval component of the EEMD-SVR-ARIMA model proposed in this paper 

show that the proposed method has a good prediction effect. 
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(a) 

  
(b) (c) 

Figure 4. (a) Figure of forecasting; (b) Residual of forecasting result; (c) Comparison of original sequence and predicted result 

 

3.4. Model Comparison 

 

To further illustrate the effectiveness of the proposed method, the classical time series models such as Holt-Winters, 

ARIMA, MLR, and SVR are selected for comparison with the model proposed in this paper. The comparative analysis is 

divided into two parts: one compares the fitting and predicting effects of the same failure time interval dataset, and the other 

compares the fitting and prediction effects of the multiple sets of failure time interval datasets. 

 

Table 1 demonstrates the RMSE comparison results fitted by each model, where RMSE_M  represents the minimum of 

a single model, RMSE_C denotes the combined model, and Relative Error Reduced (RER) signifies the percentage 

reduction of ratio [21], indicating the rate of improvement of fitting or prediction accuracy. The formula is shown as 

Equation (10): 

 

 100%M C

M

RMSE RMSE
RER

RMSE


   (10) 

 

The comparative analysis results are shown in Table 1: 

 
Table 2. The RMSE comparison results fitted by each model 

Dataset H-W ARIMA MLR SVR RMSE_M RMSE_C RER 

P5 0.037 0.036 0.036 0.024 0.024 0.01 58.33% 

SS1A 0.164 0.08 0.098 0.105 0.08 0.033 58.75% 

SS1B 0.06 0.059 0.06 0.043 0.043 0.016 62.79% 

SS1C 0.067 0.061 0.061 0.038 0.038 0.019 50.00% 

SS2 0.084 0.076 0.073 0.059 0.059 0.026 55.93% 

SS3 0.058 0.043 0.054 0.053 0.043 0.02 53.49% 

SS4 0.085 0.07 0.07 0.056 0.056 0.025 55.36% 

 

Table 1 shows that the RMSE of the combined model fit for the same failure dataset is significantly smaller than the 

other models. Overall, it also can be seen that the fitting effect of the combined model is significantly better than other 

models for the seven different failure time datasets. Figure 5 visually compares the RMSE size of each set of data fitted to 

each model. It shows that the combined model has the smallest RMSE in each set of data. 

 

Similarly, Table 2 presents the RMSE comparison results predicted by each model. Table 2 indicates that the RMSE 

predicted by the combined model is significantly smaller than that predicted by other models when the same dataset of 
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failure interval is predicted. As for the datasets with seven different failure time intervals, the RMSE predicted by the 

combined model is smaller than that of other models, and it can also be seen that the prediction effect of the combined 

model is significantly better than that of other models.  

 

 
Figure 5. RMSE comparison for fitting results of each datasets 

 
Table 3. The RMSE comparison results predicted by each model 

Datasets H-W ARIMA MLR SVR RMSE_M RMSE_C RER 

P5 0.13 0.065 0.091 0.093 0.065 0.023 64.62% 

SS1A 1.248 0.213 0.215 0.143 0.143 0.087 39.16% 

SS1B 0.098 0.098 0.098 0.059 0.059 0.026 55.93% 

SS1C 0.269 0.11 0.156 0.162 0.11 0.028 74.55% 

SS2 0.239 0.116 0.197 0.208 0.116 0.07 39.66% 

SS3 0.578 0.212 0.21 0.116 0.116 0.052 55.17% 

SS4 0.381 0.176 0.223 0.221 0.176 0.073 58.52% 

 

Figure 6 intuitively compares the RMSE size in each group of data predicted by each model. It displays that the RMSE 

of the combined model is the smallest in each group of data. 

 

 
Figure 6. RMSE comparison for forecasting results of each datasets 

 

To facilitate the further observation of the prediction effect of the model, Figure 7 shows the comparison of the 

prediction effect of the combined model and other optimal models on the failure data of each group. Relative error of failure 

(REF) is used to reflect the fitting effect of the model at each data point, and its expression is shown as Equation (11): 

 

 
ˆ( ) ( )

( )

x t x t
REF

x t


  (11) 

In Figure 7, the REF of the combined model is stable around REF = 0 for datasets SSIC and SS1B, that is, the 
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prediction effect is relatively stable. Moreover, the REF of the combined model is lower than that of other optimal models at 

most of the failure points, and this indicates the prediction effect is better. 

 

  
(a) (b) 

Figure 7. (a) Comparison figure of REF (SS1C); (b) Comparison figure of REF (SS1B) 

 

The concentration trend and dispersion degree of the model REF are respectively reflected by mean value and variance, 

and the comparison results are shown in Table 3. Mean_c and var_c represent the mean and variance of the EEMD-SVR-

ARIMA combination model REF respectively, and mean_m and var_m respectively represent the mean and variance of 

other optimal models. 

 
Table 4. The central tendency and dispersion degree of REF of two datasets 

Dataset mean_c mean_m var_c var_m 

SS1C 0.278 0.869 1.543 2.881 

SS1B 0.247 0.531 1.072 3.913 

 

It can be seen from Table 3 that for the datasets SS1C and SS1B, the mean value of the combined model REF is slightly 

less than that of other optimal models, and the variance of the combined model REF is less than that of other optimal 

models. Therefore, through the graph analysis, the fitting effect of the combined model is better than that of the other 

optimal models. 

 

As can be seen from Figure 8, for the dataset SS1B, the fitting results of the combined model overlap with the original 

failure data at most points. 

 

 
Figure 8. Schematic diagram of model prediction（SS1B) 

 

4. Conclusions 

 

This paper proposes a more comprehensive combination model based on EEMD and gives a model combination algorithm. 

A combined model based on EEMD decomposition is proposed for nonlinear and non-stationary series. This model 

decomposes the original complex failure sequence into components with different strong characteristics. Different 

forecasting models are established for sub-sequences with different characteristics, which overcomes the defect that a single 

model cannot fully capture the data’s characteristics. In addition, since the model has no obvious requirements for data 

characteristics and does not require pre-given basis functions, it is highly adaptive, so it is more widely applicable. Using 

this method for exposed datasets further proves its superiority. Most of all, this method is first used in the field of software 

reliability, which enriches the processing method of software reliability failure data. 
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Since the component prediction results are directly superimposed to obtain the final prediction results, the weighted 

combination of component prediction results can be considered in the future. In addition, when using the SVR model, the 

Gaussian basis function is used to transform nonlinear data into linear data. In the future, other basis functions, such as the 

spline basis function and trigonometric basis function, can be considered. 
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