Int J Performability Eng ›› 2021, Vol. 17 ›› Issue (8): 733-740.doi: 10.23940/ijpe.21.08.p9.733740
Kajal Dwivedi, Ramanathan Lakshmanan, and Rajeshkannan Regunathan
Submitted on
;
Revised on
;
Accepted on
Contact:
* E-mail address: kajal.dwivedi2019@vitstudent.ac.in
Kajal Dwivedi, Ramanathan Lakshmanan, and Rajeshkannan Regunathan. K-means Under-Sampling for Hypertension Prediction using NHANES Dataset [J]. Int J Performability Eng, 2021, 17(8): 733-740.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
1. Sakr S., Elshawi R., Ahmed A., Qureshi W.T., Brawner C., Keteyian S., Blaha M.J., and Al-Mallah, M.H. Using machine learning on cardiorespiratory fitness data for predicting hypertension: The Henry Ford Exercise Testing (FIT) Project. 2. Singh S., Shankar R., andSingh G.P.Prevalence and associated risk factors of hypertension: a cross-sectional study in urban Varanasi.International journal of hypertension, 2017. 3. Vuttipittayamongkol P., Elyan E., andPetrovski A.On the class overlap problem in imbalanced data classification. 4. Spelmen, V.S. and Porkodi, R.A review on handling imbalanced data. In 5. National Health and Nutrition Examination Survey Data (2015-2018). 6. López-Martínez, F., Núñez-Valdez, E.R., Crespo, R.G., and García-Díaz, V. An artificial neural network approach for predicting hypertension using NHANES data. 7. National Center for Health Statistics. Data Access—Data User Agreement. https://www.cdc.gov/nchs/data_access/restrictions.htm 8. Lopez-Martinez, F., Schwarcz, A., Núñez-Valdez, E.R., and Garcia-Diaz, V. Machine learning classification analysis for a hypertensive population as a function of several risk factors. 9. Tengnah M.A.J., Sooklall, R., and Nagowah, S.D. A predictive model for hypertension diagnosis using machine learning techniques. In Telemedicine Technologies, Academic Press, pp.139-152, 2019. 10. Branco P., Torgo L., and Ribeiro R.P.A survey of predictive modeling on imbalanced domains. 11. Chawla N.V., Bowyer K.W., Hall L.O., andKegelmeyer W.P.SMOTE: synthetic minority over-sampling technique. 12. Han H., Wang W.Y., andMao B.H.Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning. In 13. Last F., Douzas G., andBacao, F. Oversampling for imbalanced learning based on k-means and smote,2017, 14. Nguyen H.M., Cooper E.W., andKamei K.Borderline over-sampling for imbalanced data classification. 15. Prati R.C., Batista G.E., andMonard M.C.Class imbalances versus class overlapping: an analysis of a learning system behavior. In 16. Ogbuabor, G. and Ugwoke, F.N.Clustering algorithm for a healthcare dataset using silhouette score value. |
[1] | M. Muzammil Parvez, J. Shanmugam, and V.S. Ghali. Fuzzy C-based Automatic Defect Detection using Barker Coded Thermal Wave Imaging [J]. Int J Performability Eng, 2021, 17(5): 484-490. |
[2] | Huaiguang Wu, Pengjie Xie, Ming Cheng, and Hongwei Tao. A Hybrid Model of Predicting Breast Cancer Survivability based on Specific Stages [J]. Int J Performability Eng, 2020, 16(8): 1183-1192. |
[3] | Chulei Zhang, Honghua Cui, Yizhang Wang, Tiantian Zhao, and You Zhou. LDKM: An Improved K-Means Algorithm with Linear Fitting Density Peak [J]. Int J Performability Eng, 2020, 16(3): 454-461. |
[4] | Lian Yu, Lei Zhang, Cong Tan, Bei Zhao, Chen Zhang, and Lijun Liu. Repeatedly Coding Inter-Packet Delay for Tracking Down Network Attacks [J]. Int J Performability Eng, 2020, 16(2): 265-283. |
[5] | Zhiguo Liu and Changqing Ren. Unknown Protocol Data Frame Classification Algorithm based on Improved K-Means [J]. Int J Performability Eng, 2020, 16(11): 1721-1731. |
[6] | Qinggang Wu and Xueming Zhai. Remote Sensing Object Detection via an Improved YOLO Network [J]. Int J Performability Eng, 2020, 16(11): 1803-1813. |
[7] | Mingzhu Li and Yufeng Deng. A Machine Learning-based Building Operational Pattern Identification [J]. Int J Performability Eng, 2020, 16(11): 1835-1844. |
[8] | Wenjie Li. Imbalanced Data Optimization Combining K-Means and SMOTE [J]. Int J Performability Eng, 2019, 15(8): 2173-2181. |
[9] | Ming Lei, Bin Wen, Jianhou Gan, and Jun Wang. Clustering Algorithm of Ethnic Cultural Resources based on Spark [J]. Int J Performability Eng, 2019, 15(3): 756-762. |
[10] | Yan Zhang, Li Qiao, Xingya Wang, Jingying Cai, and Xuefei Liu. Automatic Software Testing Target Path Selection using K-Means Clustering Algorithm [J]. Int J Performability Eng, 2019, 15(10): 2667-2674. |
[11] | Wenqian Shang, Kaixiang Wang, and Junjie Huang. An Improved Tensor Decomposition Model for Recommendation System [J]. Int J Performability Eng, 2018, 14(9): 2116-2126. |
[12] | Rui Han, Zhiquan Feng, Changsheng Ai, Wei Xie, and Kang Wang. A Data Glove-based KEM Dynamic Gesture Recognition Algorithm [J]. Int J Performability Eng, 2018, 14(11): 2590-2600. |
|