1. Haupt, R.L. and Ellen Haupt, S., 2004. Practical genetic algorithms, 2nd Edition, John Wiley & Sons, 2004. 2. McCall, J. Genetic algorithms for modelling and optimisation. Journal of computational and Applied Mathematics,184(1), pp.205-222, 2005. 3. Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P. Optimization by simulated annealing. science, 220(4598), pp.671-680, 1983. 4. Kennedy, J. and Eberhart, R.Particle swarm optimization. In Proceedings of ICNN'95-international conference on neural networks (Vol. 4, pp. 1942-1948). IEEE, 1995. 5. Yang X.S.Nature-inspired metaheuristic algorithms. Luniver press, 2010. 6. Yang X.S.Firefly algorithm, stochastic test functions and design optimisation. International journal of bio-inspired computation,2(2), pp.78-84, 2010. 7. Dorigo, M., Birattari, M. and Stutzle, T.Ant colony optimization. IEEE computational intelligence magazine,1(4), pp.28-39, 2006. 8. Rashedi E.,Nezamabadi-Pour, H. and Saryazdi, S. GSA: a gravitational search algorithm. Information sciences,179(13), pp.2232-2248, 2009. 9. Du, W. and Li, B.Multi-strategy ensemble particle swarm optimization for dynamic optimization. Information sciences,178(15), pp.3096-3109, 2008. 10. Yao, X., Liu, Y. and Lin, G.Evolutionary programming made faster. IEEE Transactions on Evolutionary computation,3(2), pp.82-102, 1999. 11. Baojiang, Z. and Shiyong, L.Ant colony optimization algorithm and its application to neuro-fuzzy controller design.Journal of Systems Engineering and Electronics, 18(3), pp.603-610, 2007. 12. Kim, T.H., Maruta, I. and Sugie, T.Robust PID controller tuning based on the constrained particle swarm optimization.Automatica, 44(4), pp.1104-1110, 2008. 13. Cordón, O., Damas, S. and Santamaría, J.A fast and accurate approach for 3D image registration using the scatter search evolutionary algorithm.Pattern Recognition Letters, 27(11), pp.1191-1200, 2006. 14. Narayana M., Nenavath H., Chavan S. and Rao L.K.Intelligent visual object tracking with particle filter based on Modified Grey Wolf Optimizer. Optik, 193, p.162913, 2019. 15. P. Bojja,N. Sanam.Design and development of artificial intelligence system for weather forecasting using soft computing techniques”,ARPN Journal of Engineering and Applied Sciences, 12(3), pp.685-689, 2017. 16. Sridhar M., Ratnam D.V., Raju K.P., Praharsha D.S. and Saathvika K.Ionospheric scintillation forecasting model based on NN-PSO technique.Astrophysics and Space Science, 362(9), pp.1-8, 2017. 17. Jyothula, H., Rao, S.K. and Kumari, V.V.Integration of local chan vase along with optimization techniques for segmentation. In 2017 International Conference on Energy, Communication, Data Analytics and Soft Computing (ICECDS) (pp. 2776-2782). IEEE, 2017. 18. Pappula, L. and Ghosh, D.Cat swarm optimization with normal mutation for fast convergence of multimodal functions.Applied soft computing, 66, pp.473-491, 2018. 19. Reddy, B.M., Rahman, M. and Ur, Z.SAR Electromagnetic Image Conditioning Using a New Adaptive Particle Swarm Optimization.Applied Computational Electromagnetics Society Journal, 33(12) , 2018. 20. Palanisamy, H. and Palaniswami, S. Design and Performance analysis of compact H-Slotted antenna for 2.45 GHz. In 2018 International Conference on Computer Communication and Informatics (ICCCI) (pp. 1-8). IEEE, 2018, January. 21. Yan Z., Goswami P., Mukherjee A., Yang L., Routray S. and Palai G.Low-energy PSO-based node positioning in optical wireless sensor networks.Optik, 181, pp.378-382, 2019. 22. Abraham K., Diwakar G., andBojja P.Soft computing techniques which are used for rotary turning tool monitoring-literature review,International Journal of Mechanical and Production Engineering Research and Development, pp. 691-696, 2018. 23. Rajendra Prasad, C. and Bojja, P. A review on bio-inspired algorithms for routing and localization of wireless sensor networks.J Adv Res Dynam Control Syst, 9(18), pp.1366-1374, 2017. 24. Nezamabadi-Pour, H., Saryazdi, S. and Rashedi, E. Edge detection using ant algorithms.Soft Computing, 10(7), pp.623-628, 2006. 25. Lozano, M., Herrera, F. and Cano, J.R.Replacement strategies to preserve useful diversity in steady-state genetic algorithms.Information sciences, 178(23), pp.4421-4433, 2008. 26. Tripathi, P.K., Bandyopadhyay, S. and Pal, S.K.Multi-objective particle swarm optimization with time variant inertia and acceleration coefficients.Information sciences, 177(22), pp.5033-5049, 2007. 27. Hamzaçebi C.Improving genetic algorithms’ performance by local search for continuous function optimization.Applied Mathematics and Computation, 196(1), pp.309-317, 2008. 28. Wolpert, D.H. and Macready, W.G.No free lunch theorems for optimization.IEEE transactions on evolutionary computation, 1(1), pp.67-82, 1997. |